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Abstract

Shape optimisation and matching are two fundamental problems in 3D computer vision with
far-reaching scope of application areas such as industrial design engineering, 3D content gen-
eration, medical imaging, etc. While the vast majority of literature in 3D shape optimisation
are geared towards single use-cases, often the real-world applications entail a more generic
optimisation pipeline which can successfully handle multiple constraints simultaneously.
To this end, in this thesis, we propose simple yet comprehensive techniques for optimising
different physical properties of shape represented as a latent vector. Particularly in settings
where limited training data is a key concern, we demonstrate that our method is robust and
produces geometrically plausible shapes while respecting the constraints. Leveraging the
strong expressive power of Deep Implicit 3D models, we show that such latent representa-
tions are not only suitable for shape optimisation but for non-rigid shape matching such as
articulated humans. Unlike classical correspondence techniques, based on triangle mesh or
point-cloud representations, the resulting network is remarkably robust in the presence of
strong artefacts, including significant noise and missing data.
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1. Introduction

3D Shape Optimisation, which typically refers to the task of generating objects that are
structurally plausible and visually innovative is a central problem in Computer Vision,
Graphics and Machine Learning. This has a wide ranging use case, namely design, healthcare,
entertainment, construction sectors to name a few. In particular, examples include but are not
limited to generating user specific prosthetics, creative household appliances, raw material
optimised CAD models for additive manufacturing etc. Standard practices in use today for
achieving these tasks include significant expertise in artistic skills, 3D sculpting, meshing and
UV Layout, involving significant time and expense for human labour.

On the other hand, with the advent of widely available annotated 3D benchmarks, there is
a sharp increase in the use of generative models in AI assisted 3D design. This significant
advancement has been made possible due to seminal works in deep probabilistic models such
as Variational Autoencoder (VAE), Generative Adversarial Network (GANs), Variational Auto
Decoder (VAD), etc. While such methods have resulted in an uncanny valley 1 for images
and videos which are 2D representations of visual data, they fall short of producing such
levels of realism in the 3D domain. This drawback can be attributed towards ambiguity in
representation of 3D data, in contrast to unequivocal representation of 2D visual data as
grids (or matrices) containing pixels. 3D data however can be represented as voxels, Point
Clouds, Tri-mesh, Quad-mesh, RGB-D and multi-view images. Each representation has its
own advantage and there exists no standard representation protocol. Thus unique data-driven
approaches have to be modelled for each data representation, making this problem a widely
open area of research.

Despite the aforementioned challenges, in the recent past a pioneering work in 3D mod-
elling, DeepSDF [1] proposes to model shapes as Signed Distance Fields, (SDFs) through
simple Multi-Layer Perceptrons (MLPs), making them agnostic to resolution, connectivity and
input size. A key observation here is that a compact, lower dimensional latent representation
learnt from data serves as a crucial factor to encode geometric information of objects in the
neurons of the MLP. While the majority of recent research has been attempting to improve the
visual quality of generated outputs, there has been a steady increase in the use of generative
models for design oriented 3D modelling with real world constraints. This includes (1)
Resolution agnostic shape synthesis [1], (2) Reasoning between shapes using parts [2, 3], (3)
Shape recovery [4] and (4) Generating physically plausible objects [5]. Encouraging results

1https://en.wikipedia.org/wiki/Deepfake
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1. Introduction

demonstrated by the aforementioned methods have paved the way for us to further explore
the prowess of implicit representation of 3D data. To this end, continuing the recent research
frontiers in fully understanding the capabilities of implicit 3D generative models for problems
fundamental to 3D Shape Analysis is the fundamental and overall goal of this dissertation.

1.1. Shape Optimisation

The goal of shape optimisation is to generate a 3D model, satisfying various physical con-
straints which leads to better structural stability, rotational dynamics, durability etc yet
preserving geometric and visual similarity to an object of interest (or query). Changes in
shape that can be enforced at an individual mesh level by manual intervention, such as
bringing about a change in dimensions (length, breadth and width), surface area, volume
etc are termed as extrinsic property optimisation. On the other hand, modifying properties
such as mass, static friction, etc are termed as extrinsic property optimisation. To bring about
the change in the former is mostly incidental in the sense one would not need a generative
model to accomplish this task. The latter, however, is an intricate task to both humans as
well as existing research literature as there is a strong reliance on feedback mechanisms from
simulation software. Under such circumstances, having a good initial guess on the geometry
through a generative model can help ameliorate the laborious human efforts involved in such
tasks. To this end, we aim to build novel techniques that can both generate and optimise
shapes while respecting different properties.

1.2. Non-Rigid Shape Matching

Given two non-rigid deformable objects, a source and a target, represented as a mesh, the
task of non-rigid shape correspondence involves establishing a map between each point on
the source to its corresponding point on the target. The definition of non-rigidness can be
extended to any object pertaining to living things such as soft tissues, muscle fibers, organs
etc. Not so surprisingly, even moderately elastic physical objects such as fabric or rubber
can manifest such non-rigid deformation when subjected to external forces. This is a long
standing open problem, central to many research fields, namely, Computer Vision, Graphics,
Robotics, Drug Discovery, etc.

Existing state-of-the-art methods for non-rigid shape matching are either spectral methods
which rely only on intrinsic information [6, 7, 8] or use point-wise extrinsic information [9,
10]. Intrinsic methods are guaranteed to be optimal under isometry and are highly effective
even with slight perturbation to this assumption. However, such methods suffer from strong
assumptions on connectivity and their performance deteriorates by simply re-meshing two
given objects. Our key observation here is that generative models such as DeepSDF can
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1. Introduction

potentially be inert towards such connectivity dependence as they operate on an implicitly
defined volume. In this work, we will demonstrate how a Deep Implicit Neural network
geared towards shape generation task can be successfully applied to the task of non-rigid
shape correspondence.

1.3. Broader impact

Our work in Shape Optimisation is broadly motivated by the hope of advancing AI assisted
computer aided design. In particular, this project is aimed towards optimising the “Topload”
property of bottles while constraining the volume while generating shapes that are similar
to the given (query) shape. Topload is a property of an object obtained by simulation of
geometry (typically triangular meshes) along with a query weight. The query weight here
denotes the amount of plastic used for synthesising bottles. By finding an optimal design
that is geometrically closer to a given query shape and has maximum permissible Topload
while preserving the volume and amount of plastic used, one could generate novel bottle
designs that consume less plastic and are more durable for any given volume. While the
amount of weight optimised per shape is an insignificant amount, when considering large
scale manufacturing, one can save significant plastic thus contributing to a greener society. We
thank Danone, first for taking such an initiative and second for providing us with annotated
data to explore this problem of constrained space Shape Optimisation.

1.4. Our goals and contributions

Ability to optimise one or more properties of a 3D object in a differentiable yet computationally
feasible manner is an important open problem in the area of 3D Shape Analysis. However,
existing techniques for shape optimisation require significant compute power, training data
and are built to be task specific. To this end, our goal in this report will be to develop an
optimisation pipeline which is robust and can handle multiple constraints without excessive
computation cost. In order to optimise a shape, it is necessary to have a proficient generative
model which can efficiently represent input in a lower dimensional latent space. We therefore
perform an extensive preliminary study in order to identify a generative model that is robust
and efficient in representing 3D shapes with high fidelity. Then, we propose novel methods
for shape optimisation, wherein, we optimise multiple properties of the shape from its lower
dimensional latent representation - which we refer to as Latent Space Optimisation (LSO).
We further introspect into our solution and propose different optimisation techniques to
improve robustness in the presence of limited training data. Our key observation here is that
a well-learned latent representation can be optimised to reflect desired change in the shape
geometry. Building upon this observation, we also demonstrate that our implicit latent shape

3



1. Introduction

representation can be used for template deformation based non-rigid shape correspondence
and show that our approach is more robust towards noise than other state-of-the-art existing
approaches. In summary,

1. We perform a preliminary study where we extensively benchmark different reconstruc-
tion techniques to identify the most relevant one for our use-case.

2. We propose a novel technique for implicit Latent space Shape Optimisation (LSO) and
build several improvements to the LSO to be robust in the presence of limited training
data.

3. We demonstrate that our implicit latent vectors can be adapted to template based
non-rigid shape correspondence and are remarkably robust in the presence of strong
artefacts, including significant noise and missing data.

4



2. Preliminary Study

Our main objective in this chapter is twofold. First, we benchmark different implicit 3D
reconstruction methods by comparing them on a canonical test set from an existing bench-
mark. Then, we explore novel ways of enhancing the reconstruction with a specific focus of
reconstructing mesh level textures or high-frequency components by borrowing inspiration
from signal processing literature. We demonstrate a significant enhancement in reconstruction
accuracy stemming from our proposed enhancement on two dataset with naturally occurring
mesh level textures.

2.1. Introduction

A good reconstruction approach is crucial for our end goal, a superior shape optimisation and
shape correspondence through template deformation pipeline. To this end, in this chapter,
we focus on discerning reconstruction methods which are robust towards noises, being
able to generalise across all training shapes, provide a compact representation of shapes in
lower dimension as latent vectors and have a continuous well-defined shape latent space.
Furthermore, we expect the method to be able to reconstruct high-frequency components
occurring as mesh-level textures in the 3D object, for example accurately representing non-
rigidly deforming parts.

Despite the ubiquitous requirement for such methods, unfortunately, no perfect solution
exists for this task that is guaranteed to be the best of all worlds. While methods for large-
scale 3D reconstruction are capable of producing a continuous shape latent space and can
generalise to training set shapes, they do not encode high-frequency components of the input
signal (add footnote). Hence, we assimilate recent advancements in Signal Processing and
Computational Imaging to propose a reconstruction method that satisfies all the desired
properties to serve as a useful tool for Shape Optimisation.

2.2. Related work

In this section, we briefly survey the current literature in 3D shape modelling. The task of 3D
Shape modelling can be broadly classified into two main categories - a) Explicit representation
and b) Implicit representation. The former refers to approaches that models the precise
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2. Preliminary Study

location of object vertices in a 3D space while the latter models how far a given point in the
space is from the surface of the object, i.e its Signed Distance Function (SDF).

2.2.1. Explicit Shape Modelling

Data-driven methods for explicit 3D modelling can be categorised into three main methods
based on their input data, namely point-based, mesh-based and voxel based approaches.

Point Cloud modelling

The goal of Point Cloud modelling is to generate unordered point-sets that resemble real-
world 3D objects without connectivity information. Most notable methods for point-based
3D-Modelling are [11, 12, 13]. Achlioptas et al. [11] propose a deep Auto-Encoder that learns
compact latent representations for Point Clouds. In addition, they also propose L-GAN
(Latent-GAN) which is a generative model that produces novel latent vectors by training a
GAN [14, 15] on the latent vectors pre-computed by the auto-encoder. In the same spirit,
Yanget al. [13] proposes PointFlow which learns two-layered hierarchical distributions, namely
that of plausible shapes and distribution of points using Normalizing Flow [16]. Rempe et
al. [17] extend this hierarchical distribution to spatio-temporal Point Cloud generation using
Ordinary Differential Equation (ODE) at the latent space. While these approaches produce
high quality reconstruction, point clouds in themselves do not contain any topological
information making them infeasible for modelling surfaces.

3D Voxel modelling

Voxels are non-parametric extension of 2D image grid to a 3D volume. While the extension
itself appeals trivial, it paves way for adapting data-driven approaches originally built for
2D convolution on images on the 3D voxels [18, 19, 20]. However, the cubically growing
storage size and computational complexity restricts the input resolution thereby limiting
them for generating high-resolution (HR) reconstructions. To ameliorate this issue, a more
efficient data structure, Octree has been explored as an alternative [21, 22, 23]. While this
helps processing of voxels upto the resolution of 5123, yet they fall short in producing high
quality shape reconstructions, particularly owing to non-smooth normals.

Mesh Modelling

Triangular mesh (Tri-Mesh) is one of the most widely used representation of 3D objects,
which is a piecewise planar approximation of a smooth surface, compact and efficient for
rendering. Data-driven approaches for Tri-Mesh modelling can broadly be categorised into
1) Graph based approaches [24, 25, 26, 27] and 2) Part based approaches [28, 29, 30]. The
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2. Preliminary Study

former processes meshes as graphs and employs parametrised learnable operations pertinent
to graphs [31, 32] to learn a higher-dimensional latent representation of the meshes. While
these methods show high-fidelity reconstruction results, their generalisation capability is
quite low, germane to objects with low variations such as faces. On the other hand, the
part based approaches attempt to bridge this gap by processing parts of more sophisticated
individually. However, such approaches are highly sensitive to topological noises.

2.2.2. Implicit Shape Representation

Deep Implicit Neural Networks are emerging methods for efficient, differentiable and high-
fidelity shape representation. The implicit representation of shapes, typically Signed Distance
field are encoded in the shape latent vectors and neurons of neural networks, typically is a
shallow Multi-Layer Perceptron (MLP). Their working principle is very simple yet strikingly
effective. In its most generic form [1], this network takes points in 3D space as input and
predicts the signed distance of the point with respect to the surface of the object. Once the
network is trained, underlying implicit surfaces (SDF=0) can be rendered through classic
surface extraction algorithms such as Marching Cubes [33].

This contemporary data-driven modelling of 3D objects has several compelling advantages
in comparison to explicit methods, namely

• Implicit representations are resolution agnostic.

• Implicit representations can model any arbitrary topologies in comparison to point
clouds and in mesh (and voxel) based methods where the notion of topology is absent
and are fixed respectively.

• The learning process can be facilitated through shallow MLPs (typically 6 layered) in
contrast to using deeper and more memory intensive networks.

• Implicit representations can learn continuous functions defined in a volume rather than
learning points or meshes which are discrete representations of data.

• Using an implicit representation, 3D shapes can be efficiently represented as vector in a
higher dimension.

Given our end goal of shape optimisation and shape correspondence, we use the implicit
representation, where, the 3D shapes are learnt in a differentiable manner. While the field
of Deep Implicit Shape modelling is expansive, we restrict our focus in this section on
approaches that are relevant to our final goal. More specifically, we briefly review different
implicit shape modelling methods which we have used in this report for benchmarking.

7



2. Preliminary Study

DeepSDF

The main tool that we will use for reconstruction is DeepSDF [1], a simple yet powerful
method for modelling 3D shape as continuous volumetric field. Each point within that
volume is associated to a scalar value representing the point’s distance from the surface, with
the sign denoting whether or not the point is inside or outside the surface of interest. An
exemplar of such implicit representation in comparison to standard Triangular mesh is shown
in Figure 2.1. Denoting the implicit neural network with parameters θ as fθ , and p ∈ R3 be
a point near the surface of shape indexed by i whose latent representation is αi. Then, the
objective of this network is to predict the distance of p from the surface of object,

fθ (~αi, p) ≈ SDFi(p) (2.1)

At training time, the following loss is minimised, which penalises deviation in predicted
signed distance and minimise the norm of latent vectors, zi to promote compactness.

arg min
θ,{~αi}N

i=1

N

∑
i=1

(
K

∑
j=1
| fθ(p)− s|+ 1

σ2 ‖~αi‖2
2

)
(2.2)

At the test time, θ is fixed while optimal latent code~αi is estimated by Maximum-A-Posterior
(MAP) as

~̂α = arg min
~α

∑
(pj,sj)∈X

| fθ

(
~α, pj

)
− sj|+

1
σ2 ‖~α‖

2
2 (2.3)

DualSDF

DualSDF [3] is another Deep Implicit method which builds on DeepSDF, but has two impor-
tant additional functionalities. First, it represent shapes as a combination of a fixed number of
primitives - unit spheres, where the SDF of a point in shape space is approximated as the SDF
to the closest unit sphere. Second, they use a Variational Autodecoder (VAD) framework [34]
instead of Autodecoder (AD) framework used by DeepSDF [1]. In the former latent vectors
are modelled as parameters of approximate posterior distribution, which is a Gaussian with
diagonal covariance. At training time, the distribution of latent vectors are encouraged to
be closer to the original shape distribution by minimising the divergence between the two
probability distributions (or maximising ELBO), promoting compactness of the latent space.

8



2. Preliminary Study

Figure 2.1.: Standard Tri-Mesh representation of 3D object (left) and Signed Distance Field
representation of the same object (right). Blue denotes points in space that are
outside the surface and red denotes points in space inside the surface.

IM-Net

IM-Net [35] is a parallel work to DeepSDF which proposes to learn continuous SDF within a
volume as a function of parametrised MLPs. Noteworthy difference with DeepSDF is that
IM-Net applies series of 3D convolution over voxel grids to create a latent representation in
contrast to an auto-decoder based approach. Then, original point coordinates of the mesh are
concatenated to this latent vector which is then passed onto a parametrised MLPs to predict
the whether the point is inside or outside the object.

PQ-Net

PQ-Net [2] is a part-based approach, wherein, each part of a shape is segmented and encoded
into a feature vector using a seq2seq part encoder [36]. The input to the auto encoder consists
of a geometric feature vector, bounding box coordinates, the translation and scaling factors
of the local frame according to a global coordinate system. Then, each encoded parts are
decoded using GRUs [37], which decode one part at a time. This decoder at test time can
predict arbitrary number of parts, which are encouraged to be consistent using a novel stop
loss.

9



2. Preliminary Study

2.3. Benchmarking

In this section, we compare different implicit shape representation approaches discussed
above. In a broad sense, our comparison is aimed towards finding the optimal method
between Auto-Encoder vs Encoder-free and Part-based vs global approaches. We demonstrate
our comparison on Chairs from ShapeNetV2 dataset [38]. The reason for our choice is that
chairs are topologically simple object, has relatively low high-frequency details, distinct parts
and whose surface can undergo only a small degree of non-rigid deformation.

For DeepSDF and DualSDF, we train the model from scratch while for IM-Net and PQ-Net,
we use the pre-trained model provided by the author. DeepSDF was trained for 2000 epochs
while DualSDF was trained for 2800 epochs. For DeepSDF and DualSDF, we sample 500,000
points within the volume with annotated Signed Distance Function (SDF) as a pre-processing
step. We test on 300 shapes that are distinct from their respective training sets. We observe
that DeepSDF shows a promising reconstruction accuracy while DualSDF [3] is an order
of magnitude worse. A possible deduction is that auto-decoder [1] is more suited than its
variational counter-part [39]. At the same time, IM-Net and PQ-Net show slighty inferior
reconstruction results. Comparison of different methods are summarised in Table 2.1 where
the reconstruction accuracy is measured by two-way Chamfer Distance (CD), scaled by a
factor of 10−4, where lower scores amounts to better reconstruction quality. We visualise
one qualitative example in Figure 2.2 while we show more visualisations in the Appendix
Figure A.1.

Figure 2.2.: Comparison between various reconstruction methods outlined above. Order of
images are (from left to right) : Original, DeepSDF, IM-Net, PQ-Net and DualSDF.

10



2. Preliminary Study

Method CD ↓
DeepSDF 3.2
DualSDF 30.4
IM-Net 4.9
PQ-Net 6.3

Table 2.1.: Comparison between different Deep Implicit Neural network for reconstructing
Chairs from ShapeNetV2 dataset. ↓ denotes lower values are better preferred.

2.4. High-Frequency Reconstruction

While DeepSDF performed better than other reconstruction methods, it fails to reconstruct
high-frequency mesh level textures and non-rigidly deforming surfaces as shown in Figure 2.4.
Furthermore, DeepSDF considers all input points equally likely for predicting its SDF value.
However, this induces a bias in point sampling density, thereby exacerbating reconstruction
in thin-volume regions as visualised in the last row of Figure A.1. To address this, we
borrow inspiration from the signal processing literature for better representation of high-
frequency components and curriculum learning strategy for improving the geometric detail
of reconstruction.

2.4.1. Fourier Feature Mapping

While Neural Networks are highly expressive functions, they have been empirically shown
to be exponentially slow in learning higher-frequency components of the input signal [40].
This effect is more prominent in our case of coordinate based MLPs, where the eigenvalues
corresponding to the kernel expressed by MLPs rapidly fall off [41, 42]. In order to overcome
this spectral bias, drawing inspiration from Tanick et al. [42], we over-parametrise the input
to our Coordinate MLP by mapping the input coordinates to DeepSDF ∈ R3 to a higher
dimensional frequency domain [43] as

γ(v) =
[

a1 cos
(

2πbT
1 p
)

, a1 sin
(

2πbT
1 p
)

, . . . , am cos
(

2πbT
mp
)

, am sin
(

2πbT
mp
)]T

(2.4)

Where, ai and bi are the amplitude and the frequency component of the signal respectively
while p ∈ R3 denotes the input coordinate. Both frequency and amplitude are fixed during
the training phase and this mapping is performed as pre-processing step. In summary, we
map the input to DeepSDF which initially was ∈ R3+d to ∈ Rm+d where m� 3.
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2. Preliminary Study

2.4.2. Hyper-Network

The objective function of DeepSDF is a straightforward L1 loss over signed distance prediction.
While this is simple and effective, additional supervision in-terms of Normal reconstruction
can potentially result in higher quality reconstruction. Fortunately, surface normals can be
continuously estimated along the surface as spatial gradient of SDF which in our case is a
simple back propagation through DeepSDF. These higher order derivatives provide denser
supervision and with a sinusoidal activation function [44], they have been demonstrated to
better learn high-frequency features.

Figure 2.3.: Depiction of our HyperNetwork.

However, unlike the previous case of Fourier feature mapping, these constraints cannot
be incorporated into DeepSDF. This is because DeepSDF entangles latent vectors to the
coordinates as an input to the model and the input to such a network lies in Rd+3 where d is
the dimensionality of the latent vector. Thus, the dimensionality of point-wise normals would
be in Rd+3 preventing us from supervising the normal reconstruction.

To overcome this limitation, we draw inspiration from meta-learning [45, 46]. We disentan-
gle the point coordinates and shape latent vector and our SDF prediction, resulting in two
different networks for SDF prediction. The first network takes as input the coordinates of
a point and predicts its SDF. The second network takes the shape latent code as input and
predicts part of the weights of first network. Our architecture is depicted in Figure 2.3. At the
training time, we optimise the following loss function,

Lsdf = λ1

∫
Ω
|∇k fθ(k)| − 1|dk + λ2

∫
Ω0

‖ fθ(k)‖+ λ2

∫
Ω\Ω0

ψ( fθ(k))dk + ||αi||2

ψ(x) = exp(−κ · | fθ(x)|)
(2.5)
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where, αi is the latent vector of ith shape, and κ >> 1. The first term corresponds to Eikonal
boundary constraint, second term corresponds to supervising the point-wise normals, the
third term penalises for wrongly classifying points on the surface, the fourth term penalises
harshly for wrongly classifying points off the surface and the last term is used to promote
compactness in latent space. At test time, the parameters of the network are fixed and we
minimise the first four terms of the above loss function.

2.4.3. Curriculum DeepSDF

DeepSDF considers all input points equally likely in predicting its SDF. This can potentially
lead to poorer reconstruction in areas of sparse point samples, thinner volumes, etc. Cur-
riculum DeepSDF [47] proposes a twofold solution to overcome these shortcomings. First,
to improve surface reconstruction accuracy, points are incrementally penalised for wrong
SDF prediction. This implemented by using a threshold within which the DeepSDF is not
penalised for a wrong prediction while gradually reducing this threshold to zero. Second, to
address sampling discrepancy, a weighted loss function is used to penalise “hard”, “semi-hard”
and “easy” examples [48]. We adapt these supplemental losses into our reconstruction
pipeline.

2.4.4. Experiments and Observation

We compare the aforementioned methods for high frequency reconstruction on two datasets
containing high levels of naturally occurring textures. First, we consider bottles of different
designs, which are proprietary dataset of Danone. High-frequency features appears in the
form of ridges on the surface of the bottle. We use 61 meshes for training and 74 meshes for
the test set. Second, we use the open-source dataset, MPI-FAUST [49], consisting of humans
in different poses registered to a template mesh. This dataset consists of 100 meshes, with 10
distinct humans in distinct 10 poses. The first 80 meshes consisting of 8 subjects are chosen to
be the training set and the latter 20, consisting of 2 distinct subjects are reserved for the test
set.

We train all the models for a total of 2000 epochs on both the dataset, using ADAM
optimiser [50] with a starting learning rate of 1e-3. Our model consists of 6 layered MLP
with Weight Normalisation applied at each layer for DeepSDF based experiments. On the
other hand, we empirically found out 4 layered MLP with weight normalisation to be optimal
for Hyper-Network. For training our Hyper-Network 2.5, we use λ1 = 5e2, λ2 = 1e2, λ3 =

1e1, λ4 = 3e3, λ5 = 1e3 and κ = 3e3. For experiments with Fourier feature mapping, we
use amplitude a=1, frequency b = 4096 and map the coordinates to m=510 dimension. We
use 500,000 sample points per shape for all experiments. For DeepSDF based experiments,
80% of points are sampled near to the surface and the points are annotated with its SDF
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value [1]. For experiments with Hyper-Network we use 100,000 surface points along with
surface normals and 400,000 points that are sampled within the volume close to the surface
of the object. In this case however, the signed distance values of a point is not necessary and
a binary representation denoting whether a point lies on or off the surface of the object is
suffice. Reconstruction accuracy in terms of two-way Chamfer Distance scaled by 104 of
aforementioned models across two datasets is summarised in the Table 2.2. +FFM denotes
mapping the input coordinate p ∈ R3 to higher dimensional frequency domain as mentioned
in Equation 2.4. CSDF denotes Curriculum Learning strategy applied to DeepSDF. We
observe that Curriculum DeepSDF is the best performing method on the FAUST dataset
while DeepSDF+FFM is the best performing method on the Bottles dataset. While Hyper-
Network seems to better reconstruct the ridges of the bottles as depicted in Figure 2.4, it
however produces artefacts such as holes on the surface as visible in the top portion of the
reconstruction. We attempted to use more points on the surface and increase the capacity of
the network, yet these artefacts persisted and its source is presently unclear. For the FAUST
dataset, as shown in Figure 2.5 DeepSDF reconstructions are overly smooth while that of
Curriculum DeepSDF reconstructs sufficient level of details accurately. We also observe that
using Fourier Feature Mapping and Hyper-Network introduces artefact in reconstruction and
fails to reconstruct mesh-level textures accurately in the FAUST dataset. We provide more
visual examples in the Appendix section, in Figure A.2 for Bottles dataset and Figure A.3 for
FAUST dataset.

Method FAUST Bottles
DeepSDF 6.8 4.2
DeepSDF + FFM 10.8 2.6
CSDF 5.8 2.9
CSDF + FFM 13.3 2.8
Hyper-Network 15.2 4.4

Table 2.2.: Comparison of Reconstruction accuracy of different methods on FAUST and Bottles
dataset. Performance is measured by two-way Chamfer Distance.
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Figure 2.4.: Comparison between various high-frequency reconstruction methods outlined on
the Bottles dataset. From left to Right : Original, DeepSDF, DeepSDF+FFM, CSDF,
CSDF + FFM and Hyper-Network

Figure 2.5.: Comparison between various high-frequency reconstruction methods on the
FAUST dataset. Left to Right : Original mesh, DeepSDF, DeepSDF+FFM, CSDF,
CSDF + FFM and Hyper-Network reconstructions
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2.5. Summary and Remarks

In this chapter we have performed an extensive benchmarking of different Deep Implicit
Neural Networks for high-fidelity 3D shape reconstruction. First, we compared auto-encoder
with encoder-free implicit neural network and observed that encoder-free approach was
better suited for our purpose due to better reconstruction quality. Then, we identified
some well-known shortcomings with DeepSDF and explored two novel solutions for better
reconstructing high-frequency components, namely by over-parameterising the input to the
Implicit Neural Network by Fourier Feature Mapping. We benchmark different approaches for
high-fidelity reconstruction on two different datasets, namely, the FAUST dataset consisting
of articulated humans undergoing non-rigid deformation and Bottles dataset from Danone.
We observed that Curriculum DeepSDF [47] was the best performing method on the FAUST
dataset while DeepSDF with Fourier Feature Mapping was the best performing method on
the Bottles dataset. We leverage these observations to use appropriate models in forthcoming
chapters of this report.
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In this chapter, we use the implicit 3D reconstruction methods discussed in the previous chap-
ter to build our novel shape optimisation pipeline. Unlike existing optimisation techniques
that either operate on discrete surfaces with fixed connectivity or require large amount of
training data, we show that our optimisation pipeline is robust in the presence of limited
training data and be easily scaled to model multiple constraints.

3.1. Introduction

Properties of a 3D object can be either extrinsic, where the changes can be perceptually
reasoned or intrinsic, where changes cannot be perceptually reasoned for. While modifying
the former is straightforward - example shear and stretch, modifying the latter is non-trivial.
Change in intrinsic properties such as static-friction, malleability, ductility etc. cannot be
reasoned from perception alone but require additional feedback. In the design industry, such
tasks often require the expertise of artists which in general are expensive and plodding. We
observe in coherence with the recent literature of 3D Shape Analysis that such problems
can be efficiently addressed using data-driven techniques. However, existing methods for
optimisation are either task specific, susceptible to topological noises and require large amount
of training data. In contrast, in this chapter, we develop a novel pipeline for optimising
both intrinsic and extrinsic properties that are surprisingly simple yet highly effective in
comparison to more sophisticated methods. We will show that with a well-learnt shape
latent space, a shallow MLP is suffice for predicting physical properties from the shape
latent vector with accuracy which is comparable with methods that learn directly from the
geometry. We will also discussed a constrained optimisation setting, that is effective and
robust in the settings where we have access to training data that is an order of magnitude
smaller than the requirement of existing optimisation techniques. In summary, the overall
goal of this chapter is to find a latent representation of a shape that satisfies one or more
given property(ies). Recapitulating the relationship between latent vector and mesh from the
previous chapter, first, the latent vectors are decoded into point-wise SDF within a volume.
Then, the zero-level-iso-surface is extracted using Marching Cubes [33].
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3.2. Preliminaries

In this section, we will briefly overview common technical terminologies used throughout
this chapter.

3.2.1. LP-Net

Learning to predict the the intrinsic and extrinsic physical properties from the latent vector
is an important step prior to optimisation. Our approach for prediction also has to be
differentiable in order to be able to adapt to the optimisation pipeline. To this end, we use
a 4-layered MLP which takes the shape latent vector, produced by DeepSDF and predicts
different properties. This LP-Net is generic in its use and can be trained to predict one or
more physical properties.

3.2.2. Topload

The physical property which we are the most interested in optimising is the Topload and is
pertinent to bottles. It is defined as the vertical compression strength of a bottle and measured
as an indicator of the bottle pallet behaviour. In a more intuitive sense, Topload can be
visualised as a stability measure of bottles, typically for the ones made out of plastic. Such
stability are measured through simulations performed on CATIA by applying a continuously
increasing external forces at two vertical ends of the bottle. The maximum force at which
bottle starts to corrugate is defined as its Topload. As it is a Force, Topload is measured in
Newtons (N) and expressed in decaNewtons (dN) throughout this report for convenience
sake. The simulation decouples geometry from physicality, wherein, different simulations
performed on the same geometry with differing mass of the bottle yields a distinct Topload
value.

3.3. Related Work

In this section, we recapitulate current literature in Shape Optimisation and methods for
learning from 3D data. While the former is our direct goal, the latter consists of different
state-of-the-art methods for Point Cloud classification and segmentation which we use to
benchmark against our proposed LP-Net.

0https://www.3ds.com/products-services/catia/
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3.3.1. 3D Shape Optimisation

Given a 3D model, the end goal of shape optimisation is to modify the design to optimise
a particular physical property with minimalistic change in its geometry [51]. While an
arbitrary 3D object has innumerous physical properties, the most explored ones in the
context of shape optimisation are stability [52, 5, 53, 54], durability [55, 56, 57] and fluid-
dynamic constraints [58, 59, 60]. With design engineering as the primary goal, first known
data-driven approach for shape optimisation was explored by Funkhouser et al. [61], where
the user provides design using sketches and the system retrieves similar geometry from a
database. Since then, Deep Learning techniques have been increasingly used to emulate
the environment [62, 63] and modelling physically plausible geometry [4, 5]. Recent and
the most similar to our approach is that of Mezghanni et al. [5] who employ an implicit 3D
model [35] for modelling shapes with improved stability. They use a differentiable loss based
on persistent-homology [64] over the generated 3D-shape. In contrast to this, our approach
performs optimisation in latent space. In another relevant data-driven approach, Baque et
al. [59] use Geodesic Convolution Neural Network [65] to emulate fluid-dynamics simulator
to optimise parts of aircrafts to satisfy certain aerodynamic constraints. We remark that such
approaches are strongly susceptible to topological noises, while ours, thanks to implicit shape
modelling is free-from dependence on connectivity.

3.3.2. Learning from 3D data

PointNet and PointNet++ [66, 67] are two well known and first Deep Learning based methods
on point clouds data. They use a simple yet effective max pooling and spatial transformer
networks [68] for local permutation invariance. Following this, KPConv [69] attempts to
reproduce the working principle of CNNs on Point Cloud. They apply Convolution Operation
on Points, where the convolutional filters are located in continuous Euclidean space learnt
from data. To ameliorate the fact that point clouds inherently lack topological information,
Dynamic Graph CNN [70](DGCNN) “dynamically” constructs a graph at each layer in a
differentiable manner while aggregating neighbouring information in the graph using a novel
EdgeConv module. DiffusionNet [71] is yet another method for learning from PointCloud
and Meshes, simple in built and comprehensive in terms of applications. It learns point-wise
diffusion (propagation of heat on a surface) through learnable diffusion layer and builds
anisotropy through gradient features by projecting the estimated point-wise normals to
the tangent plane. Learning diffusion and anisotropy are built to be analogous to mimic
convolution and pooling operation on 2D images. In the context of this report, we use the
aforementioned methods to benchmark the efficacy of our proposed LP-Net.

19



3. Shape Optimisation

3.3.3. Latent space shape exploration

At the heart of all data-driven techniques lies a canonical representation of data in lower
dimension. Such low-dimensional subspaces have been well-studied in the context of shape
space exploration even prior to the advent of Deep Learning [72, 73, 74, 75] with a particular
focus on leveraging symmetry [76, 77]. Shapira et al. [72] extract low-dimensional shape
embedding using a mixture of Gaussian models in the seminal work on data-driven latent
space exploration. In the recent literature, such lower dimensional representation from a Deep
Network, typically latent vectors, are being extensively studied for learning mesh deformation
space [4, 78, 79], cage deformation space [80], vertex offsets [81] etc. However, to the best of
our knowledge, currently Latent space shape exploration has not been studied in the context
of 3D shape optimisation of physical properties. We believe our work is the first to study the
applicability of learnt shape latent space for Shape Optimisation.

3.4. Approach

In this section, we delineate different approaches for optimising 3D shape at its latent space.
We first demonstrate our straightforward gradient ascent based approaches and then discuss
constrained latent space optimisation. While our first approach is simple and straightforward,
such techniques often do not scale well with Deep Learning methods due to the highly non-
convex nature of the optimisation space. Furthermore, our goal is to also build an approach
that is robust in settings where paucity of training data is a key concern. To this end, we
delineate new constrained optimisation techniques, where we force the optimisation to be in
the linear subspace defined by the convex-hull of latent vectors. By carefully choosing points
that define this convex-hull, we empirically observe, as shown in the subsequent section, that
our approach converges to a minimum.

3.4.1. Generic Latent Space Optimisation (LSO)

Using the pre-trained LP-Net and DeepSDF, the goal is to sequentially modify the latent vector
to generate new shapes which are realistic while faithfully reflecting the change in physical
property of the object of interest. Let fθ denote trained Deep-SDF with fixed parameters θ, gφ

denote the LP-Net with fixed parameters φ and the latent vector denoted by~α. Then, the task
of LSO is to find the optimal latent vector by minimising the following energy,

E = argmin
~α

λ1|
N

∑
i=1

fθ(xi,~α)− si|+ λ2|gφ(~α)− δ| (3.1)

Where δ is the scalar physical property of interest. The parameter λ controls the impact of
LP-Net in modifying ~ψ. The first term of this energy enforces geometric similarity through
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point-wise SDF while the second term optimises a physical property.

3.4.2. Dual Latent Space Optimisation (D-LSO)

Optimisation discussed for a single scalar property in the previous section can be extended
for multiple properties in a straightforward manner. For simplicity, we delineate how
this optimisaiton can be done for two properties simultaneously. Let gφ1 be LP-Net with
parameters φ1 trained to predict the scalar property δ1 and gφ2 be LP-Net with parameters
φ2 trained to predict the scalar property δ2. Then, the task of dual-LSO is to minimise the
following energy,

E = argmin
~α

λ1|
N

∑
i=1

fθ(xi,~α)− σi|+ λ2|gφ1(~α)− δ1|+ λ3|gφ2(~α)− δ2| (3.2)

3.4.3. Adversarial Latent Space Optimisation (A-LSO)

Additional constraints can be imposed on the latent vector to lie in the realistic shape space.
For this, we use the Discriminator of L-GAN [11] to classify the latent vector to be real or fake.
First, we train the L-GAN to classify shape latent vectors produced by our reconstruction
method as real and ones generated by the Generator to be fake. Then, at the time of
optimisation, we use this mis-classification penalty from this pre-trained Discriminator to
encourage latent vectors to be realistic. Considering hψ to be the Discriminator with learnt
parameters ψ, the goal of our new adversarial LSO is then,

E = argmin
~α

λ1|
N

∑
i=1

fθ(xi,~α)− σi|+ λ2|gφ1(~α)− δ1|+ λ3|1− hψ(~α)| (3.3)

3.4.4. Local Latent Space Optimisation (L-LSO)

The optimisation which we have seen until now can quickly converge to a local minimum,
where the latent vector would not correspond to a meaningful shape, for example, the
extracted iso-surface might not lie in the volume range. This is bound to happen when there
is insufficient training data and the latent vectors are far from each other in the embedding
space. Leveraging on the previous observations [1] that shape latent space is well defined
along the linear path between two latent vectors, we propose a new retrieval based local
shape optimisation approach. Let us assume that we are given a shape S0 with associated
latent vectors and physical property α0 and δ0 respectively. Our goal is to optimise the latent
vector α0 to α̃0 whose physical property is close to δ1 while the optimised shape being visually
similar to S0. Our algorithm can then be defined as follows,
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Algorithm 1 Retrieval based local shape optimisation

Require: S0, α0, δ0, δ1, K
Ensure: {α0 . . . αN}

1: Compute L0 corresponding to S0

2: Set j = 0, T = ∅
3: while j ≤ K do
4: Find Li = argmin

~α

|gφ(~α)− δ1|+ ||Lj − L0||2 ∀Lj ∈ L

5: Lk = tL̇i + (1− t)L̇0 where, t ∈ (0, 1)
6: T = T ∪ Lk
7: L = L \ Li
8: j+ = 1
9: end while

10: return T

3.4.5. Optimisation in a convex region

The constraint we imposed in the previous case is too strict in the sense that we can only
generate shapes that lie along the path traced between query shape and the retrieved shape.
This however limits the generative capability of our optimisation. To alleviate this shortcoming,
we propose to find the optimial latent vector in the region defined by convex hull of K-points.
For mathematical brevity, we restrict K=4 to our discussion, but theoretically K can take any
value between K=1 and K=M, where M is the size of training shapes. To recap, K=1 was
discussed in the previous section. Our objective for optimisation in convex region is then
defined as

E =argmin
~Ω

N

∑
i=0

λ1 | fθ (Ω, xi)− si|+ λ2
∣∣gφ(Ω)− δ1

∣∣
Where, Ω =w1 ~α1 + w2 ~α2 + w3 ~α3 + w4 ~α4

s.t wi ∈ [0, 1] and ∑
i=1

wi = 1

(3.4)

Unlike the case of optimisation in Equation 3.1, where the latent vectors are updated
through gradient ascent, in this case, we only update the variables highlighted in green in the
above equation to restrict the latent vector to lie in the convex-hull.

3.4.6. Optimisation in a convex region with additional constraints

While optimising in the convex region imposes constraint on the space where latent vector
is optimised, it still comes with the same flexibility as the standard LSO and allows us
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to add more constraints to the latent space in-terms of the scalar property we predict. In
our experiments, we use volume constraint in addition to the Topload constraint while
encouraging realism through the adversarial loss similar to Equation 3.3. Considering gφ2

to be LP-Net with parameters φ2 trained to predict the scalar property δ2, then, the dual-
constraint optimisation in convex region is,

E =argmin
~Ω

N

∑
i=0

λ1 | fθ (Ω, xi)− si|+ λ2
∣∣gφ1(Ω)− δ1

∣∣+ λ3|gφ2(~α)− δ2|+ λ4|1− hψ(~α)|

Where, Ω =w1 ~α1 + w2 ~α2 + w3 ~α3 + w4 ~α4

s.t wi ∈ [0, 1] and ∑
i=1

wi = 1

(3.5)
Where hψ is the Discriminator with fixed parameters ψ.

3.5. Results

We first explore different scalar properties of solids and illustrate the robustness of LP-Net. To
justify our previous claim that well-learnt latent vectors are capable of accurately predicting
intrinsic scalar properties, we exhaustively benchmark LP-Net against other state-of-the-art
methods that operate on Point Clouds and Meshes for comparing intrinsic properties. We
then demonstrate qualitative and quantitative results for shape optimisation. Our experiments
are mainly focused on bottles from Danone while we also demonstrate preliminary results on
Chairs from the ShapeNetSM [82] benchmark.

3.5.1. LP-Net Performance

We start with a relatively easy task of predicting scalar property using LP-Net. While this is
not our primary goal, it is important to have an optimal prediction as this step plays a crucial
role in gradient based shape optimisation.

Extrinsic Property prediction

We show the efficacy of LP-Net for predicting the extrinsic scalar properties namely Width,
Height and Length and Weight. We use a 3 layer MLP for LP-Net with weight normalisation
and 256-d hidden size. The prediction accuracy (in terms of Mean Square Error) is summarised
in Table 3.1. We observe an overall convincing performance while admitting a minor over-
fitting in weight prediction.

23



3. Shape Optimisation

Scalar to Predict Accuracy (Training set) Accuracy (Test set)
Bottles Chairs Bottles Chairs

Width 93% 94% 94% 88%
Height 95% 96% 96% 91%
Length 94% 93% 91% 85%
Weight 94% 84% 95% 79%

Table 3.1.: Comparing performance of LP-Net on Chair class from ShapeNet-SM dataset and
Bottles dataset.

Topload Prediction

Topload is an intrinsic property of bottle that we are interested in optimising. To this end,
we need to have a good estimation of topload, ideally with our LP-Net. In this sub section,
we will compare the Topload prediction of LP-Net with other state-of-the-art point cloud
processing methods which are typically used for segmentation and classifying tasks. Ground
truth Topload is obtained by performing simulation where a bottle is given an arbitrary mass
that is distributed along the vertices of a mesh. For mesh and point cloud based methods,
we will use this additional point-wise information. On the other hand, for LP-Net, which
predicts Topload from the latent vector, we will concatenate the sum of all the point-wise
mass to the latent vector.

We benchmark different methods for Topload prediction on the bottle dataset in Table 3.2.
For PointNet, we use 5 fully connected layers whereas for PointNet++ we use three-level
hierarchical network with three fully connected layers and kNN based neighborhood search
with k=64 neighbours. For DynamicGraphCNN we use 3-layered MLP stacked with dynamic
EdgeConv module as feature extractor with k=30 nearest neighbors in the feature space to
dynamically construct the graph. Among multiple variants for DiffusionNet, we found 20,000
vertices per shape per batch with 192 filters and 8 diffusion blocks to have the best test set
accuracy. For PointNet++, PointNet, DGCNN and DiffusionNet, the input to the network
consists of mesh vertices stacked together with point-wise thickness values. DiffusionNet-
Mesh denotes the same DiffusionNet model applied on the mesh instead of PointCloud. In
this case, however, we do not use point-wise thickness values as the triangulation do not
share same vertices as before. We posit this to be the reason for inferior performance than its
Point Cloud counterpart. To use MeshCNN [27] on our meshes, we first apply quadratic edge
collapse [83] to simplify the existing mesh to contain approximately 2k edges. Then we apply
4 MeshConv operations followed by MeshPool operations and finally apply Global Average
Pooling followed by 2 MLPs to predict the Topload value. For our LP-Net, we empirically
found out that 4-layered MLP produced the best results. We compare two different variants
of LP-Net, one with weights of the bottles (in grams) stacked to its latent vector denoted as
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LP-Net and without the weight information denoted by LP-Net w/o weight.

Method Accuracy (training set) Accuracy (Test set)
PointNet [66] 84% 83.5%
PointNet ++ [67] 85.5% 86%
Dynamic Graph CNN [70] 82% 85%
DiffusionNet [71] (Point Cloud) 90% 85%
DfN [71] (Mesh) 82% 79%
MeshCNN [27] 82% 77%
LP-Net w/o weight 88% 81%
LP-Net 87% 84%

Table 3.2.: Comparing various aforementioned point-based learning methods on bottle dataset
for Topload prediction.

3.5.2. Extrinsic Property optimisation

In this sub-section we illustrate quantitative and qualitative results of optimising extrinsic
scalar properties, namely length, width, height and weight on bottles and chairs dataset. We
believe this serves as an empirical proof-of-concept for intrinsic property modification. A
proof-of-concept is necessary as unlike the case of extrinsic property optimisation, we do
not have a visual feedback or can measure the change in the property in the case of intrinsic
optimisation.

We first compare between the generic LSO described in Equation 3.1 and Adversarial Latent
Space Optimisation (A-LSO) described in Equation 3.3. We measure the optimisation based
on two criteria - first, reconstruction accuracy as two-way Chamfer Distance (CD) multiplied
by 103 and second, the measured difference in scalar property (Ratio). Results for change in
height, width and length as a result of LSO are summarised in Table 3.3 and we demonstrate
a qualitative example in Figure 3.1.
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Method CD↓ Ratio of Change
Height Width Length Height Width Length

Direct Reconstruction 0.94 1.00
Increase 3.5 2.8 3.2 1.18 1.10 1.09
Increase + GAN 3.4 2.6 2.9 1.18 1.10 1.08
Decrease 4.3 4.1 4.4 0.89 0.90 0.85
Decrease + GAN 4.1 4.1 4.2 0.89 0.90 0.85

Table 3.3.: Extrinsic scalar property modification. +GAN denotes the use of adversarial loss
as described in Equation 3.3

Figure 3.1.: From Left to Right : Original bottle, change in height by LSO and magnitude of
change in the height across the test set.

3.5.3. Topload Optimisation

Optimising the Topload of bottles is our main goal. Given a bottle and optionally its current
Topload measure and the target Topload, the goal of this optimisation is to modify the
geometry of the bottle to satisfy the target Topload while remaining visually similar to the
given bottle. For all our experiments, the end goal is to optimise Topload to 170dN. However,
unlike the experiments discussed before, in this case there is no unique well-defined metric.
Therefore for quantitative comparisons, while we measure the similarity to the starting mesh,
it is important to keep in mind that a lower Chamfer’s Distance is a necessity but not sufficient
condition. Additionally, we also report the Minimum Matching Distance (MMD) [11] to
gauge its fidelity. We compare on the 74 test set meshes used in the previous section for
reconstruction. The quantitative performance results of optimisation is summarised in the
Table 3.4. ↑ denotes that higher value of the metric is preferred while ↓ denotes that lower
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value of the metric is preferred. Our rule of thumb to gauge different approach is based on
lower MMD, higher Mean Topload and lower change in volume.

We denote the standard Latent Space Optimisation corresponding to Equation 3.1 as LSO
and with adversarial loss described in Equation 3.3 as A-LSO. Local Latent Space Optimisation
as depicted in Algorithm 1 is denoted as L-LSO. C-LSO denotes the dual-constrained Latent
Space Optimisation as described in Equation 3.5 typically performed with k=3 neighbours.
We re-iterate that the choice of neighbour is a crucial step in our optimisation. We choose
at random, one neighbour from the training set whose Topload value is larger than 150.
Empirically, we have observed this to be the best practise while choosing neighbours whose
Topload values are smaller than the query shape often fails to converge. “C-LSO NN” is the
case when two neighbours are chosen based on minimum area formed by the triangle in the
latent space while in the case of “C-LSO FN”, two neighbours are chosen such that area of
the triangle in the latent space is maximum. “C-LSO W/O Volume” refers to the optimisation
described in Equation 3.4. Finally, we also compare to the case when we optimise in the
Convex Hull defined by four points in the latent space as “C-LSO k=4”.

For all the experiments, we perform optimisation for 4000 steps or until convergence
using ADAM optimiser [50] with a learning rate of 0.001. We empirically observed that
using λ1 = 1, λ2 = 0 for first 800 iterations and then fix λ1 = 0.1, λ2 = 0.05 gives best
performance in-terms of reconstruction. This is because reconstruction of the shape in the
first 800 iterations is important prior to optimisation. For experiments with A-LSO, we use
λ3 = 0.01 the coefficient for adversarial penalty and use W-GAN GP [15]. For optimisation
in convex region, we empirically found out that initialising the latent vector close to the
query latent vector proved effective in convergence. To enforce the convexity constraint in
a differentiable manner, we apply softmax over the set of coefficients wis. Throughout the
study, our primary constraint is the Topload and secondary constraint whenever used refers
to the Volume of the bottle.

For the vanilla Latent Space Optimisation denoted as LSO constantly converges to a local
minimum, meaning, the latent vector does not render an iso-surface upon extraction using
Marching Cubes for the majority of shapes in the test set. Thus, we do not report any metrics
for the same. We posit insufficient training data to be the reason for this convergence to local
minimum. A-LSO seems to be the best performing method in terms of fidelity while C-LSO
NN compromises the reconstruction fidelity to further optimise Topload. When the constraint
on the volume is not applied, the Topload is better optimised, however, there is a significant
change in the volume than desired. We show one qualitative example of our optimisation in
Figure 3.2 while we visualise more examples in the Appendix section in Figure A.4.
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Method CD↓ MMD↓ Mean Topload (dN) ↑ Change in Voume (cL)↓
LSO - - - -
A-LSO 0.29 2.9 140.1 45.0
L-LSO 20.9 11.1 131.7 97.2
C-LSO NN 19.2 9.0 157 45.8
C-LSO FN 72.9 31 165 50.4
C-LSO W/O volume 14.0 8.7 163 94.5
C-LSO k=4 12.4 0.7 120.2 61.4

Table 3.4.: Qualitative comparison of different variants of LSO.

Figure 3.2.: Comparison of different approach for Topload optimisation. From left to right :
A-LSO, L-LSO, C-LSO NN, C-LSO with k=4 neighbours.

3.6. Summary and Remarks

In this chapter we introduced our novel Latent Space Shape Optimisation (LSO) along with
many variants to optimise properties of shape in its latent space. We also demonstrated that
using a light-weight 4-layered MLP on the shape-learned latent vector can predict extrinsic
(visually perceptible) physical properties with very high accuracy. Complimenting this, we
also demonstrated that predicting intrinsic shape property, Topload of a bottle from this
latent vector performs comparable to approaches that use surface-level information. We
then extensively benchmark the different variants of Latent Space Optimisation (LSO) and
empirically found out that without additional constraints imposed on the latent space, our
optimisation does not converge. The reason for this phenomenon is that when there is
insufficient training data, the latent vectors are well separated in the latent space and gradient
ascent alone is incapable of attaining the global minima due to highly non-convex nature of
the optimisation space. To ameliorate this shortcoming, we proposed constrained optimisation
in the convex hull defined by “k” other training set shapes. Empirically we demonstrated that
using k=2 neighbours is the best performing method in terms of final Topload optimisation
value and at the same time better respects the volume preservation constraint.
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3. Shape Optimisation

While this approach is interesting there are a few known limitations. First, we do not
have an exact metric to gauge the optimisation and rather use an amalgam of several
measurements to gauge the optimisation. Second, limitation is with respect to fixing the
neighbours prior to the optimisation process and requiring one of the neighbours to have a
larger Topload value than the query shape. Using learning based techniques [4] to overcome
this limitation is an interesting future work to ponder upon. Finally, an important point of
research is to better understand the failure of LSO. At present, extracting a shape from its
latent representation involves estimating point-wise Signed Distance Field (SDF) within a
voxel of arbitrary volume and applying Marching Cubes [33] to extract the iso-surface. This
process is non-differentiable and feedback from visual inspection is limited. Therefore, to
have a better theoretical understanding of such failures and devising appropriate constraints
in our optimisation is a key area of research for future work.
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4. Non Rigid Shape Correspondence

In this chapter, we propose a new non-rigid shape correspondence approach based on latent
neural networks which we used for reconstruction purposes in the previous chapters. We
demonstrate that latent vectors from implicit neural networks can be successfully adapted to
template based deformation approaches for shape correspondence and are robust to strong
artefacts, including significant noise and missing data. As the direction of research we discuss
in this chapter in itself is novel, we conclude this section by precise limitations of our current
approach and potential future work.

4.1. Introduction

Given two non-rigidly deforming objects, a source and a target represented as a Tri-Mesh, our
goal is to establish a map between each point on the source and the target. Non-rigid shape
correspondence is a long standing central problem in Computer Vision and the expansive
literature in this topic focuses on developing local descriptors [84, 85], representing shapes
in a reduced basis [86], estimating a map in this reduced basis [6], and methods for map
refinement through iteration [8, 7, 87]. All these methods are purely intrinsic, meaning, they
do not leverage information on the location of point-wise coordinates of shape in the 3D space.
On the other hand, a purely extrinsic approach in this domain tackles this problem by learning
to deform a fixed template to establish correspondence between a source and a target. At
present, such extrinsic methods [88, 89] are not sufficiently explored as they require multiple
optimisation steps to learn ordering, rotation invariance and establish correspondence. Our
key observation here is that a well-learnt latent representation of 3D objects can serve to be
better suited for template deformation.

To this end, we propose to use shape latent vectors from Deep Implicit Neural Networks for
learning to deform templates. Our proposed method is purely extrinsic and does not depend
on connectivity, mesh density and can be adapted to match shapes with noise. Furthermore,
we also demonstrate encouraging results in partial shape correspondence settings. This work
is substantially a work in progress and we focus only on encouraging preliminary results
and not robust findings. Our results show promising signs of the first step in implicit shape
matching and open possibilities to explore methods which can potentially pave the way for
combining intrinsic and extrinsic methods for non-rigid shape correspondence.
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4.2. Related Work

To the scope of our discussion, the literature of non-rigid shape matching can be broadly
divided into classical methods which relies on local information such as mesh connectivity
and reconstruction based methods which learns correspondence from template.

4.2.1. Classical Methods

Classical methods for non-rigid shape matching or more broadly shape analysis are intrinsic
i.e, they leverage local connectivity of points [90] rather than considering their location in
3D space. Significant work in the past have designed various point-wise signatures which
typically are invariant under rigid transformation [91, 92], non-rigid transformation [93] by
preserving isometry [94], near-isometry [95, 6] and conformity [96, 97] to name a few. Recent
data-driven spectral methods [98, 99, 100] in non-rigid shape matching follows the Functional
Map pipeline [6], which is a linear transformation (represented by matrix) between functions
defined on surface (ex. heat diffusion [85]) between source and target. The most interesting
aspect is that these functions can be compactly represented in their respective basis, typically
first k-eigen functions of the cotangent Laplacian matrix [101]. Recent advancement relevant
to our current discussion includes techniques for map refinement [7, 8], leveraging learning
based techniques [99, 98, 102] and inclusion of extrinsic information into the Functional Map
pipeline through point-wise coordinates and normals [9, 10]. While Eisenbergeret al. [10] show
that extrinsic information can be built into Functional Map pipeline to disambiguate issues
pertaining to symmetry, they use pre-computed point-wise signatures [103] that are highly
sensitive to connectivity and meshing. We conclude this section by remarking that attempts
insofar attempt to include discrete extrinsic information while our work can potentially pave
a way to define such intrinsic quantities such as vector field inside a continuous volume.

4.2.2. Correspondence through reconstruction

Most reconstruction based approaches deform a shape template to match a given source and
target [104, 88, 105, 106]. These templates are triangular meshes with fixed number of vertices,
which are curated to a particular object (humans, animals, etc) and are carefully parametrised
handle pose variations. Templates are deformed with two primary objectives 1) preserve order
and 2) minimise reconstruction loss. Most notable and similar to our proposed approach
is 3D-Coded [88]. They use a PointNet [67] based encoder to learn a latent representation
of each object and deform each vertex of the template to match the given shape using a
supervised loss function that necessitates the template to be in 1-1 correspondence with
training shapes. At test time, source and target meshes are deformed independently and
dense correspondence is established through nearest-neighbour search on the template. More
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recently, two concurrent approaches propose to match shapes in implicit field [107, 106]. They
respectively learn deformation in the implicit domain [1], by simultaneously learning a SDF
for template as well as objects through point-wise transformation. The deformation in the
implicit field however does not respect a 1-1 correspondence, have a strong normal consistency
assumptions thereby making them unviable for the task of non-rigid shape correspondence.

4.3. Approach

Given a pair of shapes M and N , typically represented as triangular meshes, our goal
is to establish a point-to-point (P2P) map Π between each points pM ∈ M and pN ∈ N .
Let ~αM and ~αN be their respective latent representation obtained from our deep implicit
reconstruction network fθ . Let T be the template mesh with N vertices, which we deform
using Displacement Network dψ with parameter ψ to establish correspondence.

Our first step involves learning to deform a template to match reconstruct the source and
the target. The displacement network consists of 4-layered MLP which takes the shape latent
vector~α concatenated with points from the template mesh as~α⊕ pT and outputs points in
3D space p̃T ∈ R3. The points p̃T represent ordered vertices of the mesh which we aim to
reconstruct. Training objective of the displacement network can be written as,

E = argmin
~ψ

||
N

∑
i=1

dψ(~α⊕ pi)− si||2 (4.1)

Where si is a point on the mesh that we aim to reconstruct, which are registered with the
template mesh. Once the displacement network dψ is trained, we fix the parameters ψ to
be fixed and optimise the template reconstruction by minimising the two-way Chamfer’s
Distance, to obtain the optimal latent vector as,

LM = argmin
~α

∑
p∈M

min
q∈T

∣∣dψ( ~αM ⊕ pi)− q
∣∣2 + ∑

q∈T
min
p∈M

∣∣dψ( ~αM ⊕ pi)− q
∣∣2

LN = argmin
~α

∑
p∈N

min
q∈T

∣∣dψ(~αN ⊕ pi)− q
∣∣2 + ∑

q∈T
min
p∈N

∣∣dψ( ~αN ⊕ pi)− q
∣∣2 (4.2)

Different to Equation 4.1, here we optimise for the latent vector~α and not the parameters
of the network. Then a point pM ∈ M and pN ∈ N are in correspondence if

pM = argmin
p′∈T

|dψ(~αM ⊕ p′)− pM|2

pN = argmin
p′∈T

|dψ(~αN ⊕ p′)− pN |2
(4.3)
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In summary we use shape latent representation~α from an auto-decoder, which is primarily
reconstruction network in contrast to using a PointNet encoder as in the case of 3D-Coded [88].

4.4. Experiments

In this section, we will illustrate the quantitative and qualitative performance of our method
for the task of non-rigid shape matching across four different settings, namely, generic, a
re-meshed dataset and on shapes with noise in the form of cuts and holes. In the case
of data-driven methods, we train on the first 80 meshes of the MPI-FAUST dataset [49].
The performance is measured in terms of geodesic distortion which is the geodesic error
computed on the surface of the target mesh between the ground truth corresponding point
and predicted correspondence [108]. Methods with smaller geodesic error is gauged better
than its counterpart. More formally, the metric is defined as follows,

Definition 4.4.1 (Geodesic Distortion) Let pm ∈ M and pn ∈ N be points on shapesM and N
respectively. Let Π̃ and Π be the predicted and ground-truth point-to-point map betweenM and N
respectively, then the geodesic distortion [108] is computed as

d = dN (Π̃(x), Π(y))∀x, y ∈ M (4.4)

where dN (·, ·) is the geodesic distance between points on shape N .

4.4.1. Experimental Setup

We compare our method with two data-driven methods and two axiomatic methods. For
axiomatic methods, we use Functional Map [6] with 20 point-wise WaveKernel [84] descriptors
and 100 Eigenfunctions on source and target respectively. In addition we also use the
orientation preservation operator [8] and multiplicative operators [109] in solving for the
Functional Map. We refer to this method as BCICP in our comparisons. We refine the initial
map produced by BCICP with 15 ZoomOut iterations, which we denote as “zoomout” in our
experiments. We also compare with two learning based techniques, namely DeepShells [10]
and 3D-Coded [88]. We pre-compute 352 dimensional SHOT descriptors [103] on each shape
and use 200 Eigenfunctions for the truncated spectral filters and train on 802 training meshes
from FAUST [49] dataset for 20 epochs. We train our method and 3D-Coded on 80 training
meshes from [49] dataset for 1000 epochs to learn point-wise ordering - Equation 4.1 and
3000 iterations for latent code optimisation - Equation 4.2 respectively.
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4.4.2. Generalisation to connectivity

In this sub-section we compare different methods on the original MPI-FAUST dataset [49]
and the FAUST Re-meshed dataset [8]. For data-driven methods, we train only on the
first 80 meshes of the MPI-FAUST dataset and evaluate on the last 20 meshes of both the
datasets. Our quantitative results are summarised in Figure 4.2 and in Table 4.1. Method
with highest percentage of correspondence at the cost of minimal geodesic error is gauged
to be better performing. Our method performs the best on the FAUST Re-meshed dataset
while it performs comparable to other methods on FAUST Original. A key observation here
is that the geodesic distortion of other methods are nearly twice as worse as our method on
the FAUST Re-meshed dataset implying they are sensitive towards connectivity. In contrast,
ours and 3D-Coded does not show signs of deterioration with re-meshing. We visualise
more examples of correspondence in the Appendix Figure A.5. We also show a qualitative
comparison between correspondence predicted by our method and 3D coded along with the
ground truth correspondence in Figure 4.1. Please note that ground-truth correspondence is
not a bijective map. Hence, the grey regions denote the vertices on the target mesh that does
not have any correspondence in the source mesh.

Figure 4.1.: Left to Right : 1) Source mesh, Target mesh with correspondence color-coded by
2) 3D-Coded, 3) Ours and 4) ground truth. Grey regions denote vertices with no
Ground Truth correspondence as the ground truth map is not bijective.
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(a) (b)

Figure 4.2.: Quantitative comparison measured in-terms of Geodesic distortion as function of
percentage of correspondence on Left : FAUST-Original and Right: FAUST-remesh
dataset.

4.4.3. Generalisation to cuts and holes

We further explore the generalisability of our approach with respect to benign partiality
and noise. To test this, we consider the aforementioned test set of 20 meshes and introduce
partiality in the form of cuts and holes as visualised in Figure 4.3. Similar to the previous
experiment, we train on the first 80 meshes of the original FAUST dataset and test the
correspondence accuracy for matching between these partial shapes and part-to-whole.
Quantitative comparison results are illustrated in Figure 4.4 and summarised in Table 4.1.
For the part-to-whole setting, we only compare our method against 3D-Coded as other
methods which are based on Functional Map, do not necessarily apply to this setting as the
Laplacian [90] is only defined for parts and not the shape as a whole. Our method marginally
performs better than 3D-Coded while both the template based methods do not deteriorate as
significantly as others in the presence of strong noise. We show more qualitative examples of
different settings in the Appendix section Figures A.6, A.7, A.8.
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(a) (b)

Figure 4.3.: An example visualising our created part dataset from FAUST-Remesh dataset.
Left : our dataset with random cuts, Right : Our dataset with holes.

(a) (b)

Figure 4.4.: Quantitative comparison measured in-terms of Geodesic distortion as function of
percentage of correspondence between different methods on our dataset created
from the test set of FAUST-remesh dataset. Left : Cuts dataset Right : Holes
dataset.
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Dataset BCICP ZoomOut DeepShells 3D-Coded Ours
FAUST 0.065 0.026 0.007 0.064 0.033
FAUST-Remesh 0.105 0.060 0.047 0.035 0.028
Cuts 0.698 0.603 0.502 0.068 0.048
Holes - - - 0.195 0.179

Table 4.1.: Summary of mean geodesic error of different approaches on various dataset
mentioned above.

4.4.4. Observation and Remarks

In this section we demonstrated that implicit latent representations are better suited for
template based non-rigid 3D Shape correspondence than its counterpart extrinsic method,
3D-Coded. We remark that while our method is trained on the original FAUST dataset, it
performs nearly twice better than the existing state-of-the-art method DeepShells on the
FAUST-Remesh dataset. Furthermore, on our generated parts and cuts dataset based on
FAUST-Remesh, our performs better than all the baseline. However, on the original FAUST
dataset, ZoomOut and DeepShells show better performance than our method. We posit that
simple mesh connectivity to be the reason for them to outperform us on the relatively simple
FAUST dataset. While our method has shown signs of robustness on the FAUST dataset,
there are currently some drawbacks which we address in the next section.

4.5. Drawbacks and Work in progress

While initial results of using an implicit latent representation looks encouraging on the FAUST
dataset, however, our approach largely fails to generalise. In this section, we will discuss two
such scenarios.

4.5.1. Adapting to unseen poses

Our approach largely fails to generalise to unseen poses at training time. In particular, the
FAUST dataset contained poses in the test set which already was a part of the training set. We
illustrate this with an example on the SCAPE dataset [110], which contains new unseen poses
in the test set. We train our method and 3D-Coded on randomly sub-sampled 4k meshes
from the SURREAL dataset [111, 88]. While the SURREAL dataset contains meshes that are
in 1-1 correspondence and in distinct poses, it does not contain exactly same poses in its
training and test set, in contrast to the FAUST dataset. Surprisingly, 3D-Coded demonstrates
convincing quantitative results as shown in Figure 4.5 while our approach falls short of
producing acceptable results. The reason for the non-scalability of our approach and its lack
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of generalisation is something which we do not fully understand.

(a) (b)

Figure 4.5.: Left : Original mesh and reconstructed mesh by our approach on SCAPE dataset.
Right : Quantitative geodesic distortion error on SCAPE dataset.

In addition, while both 3D-Coded and our approach showed encouraging results on our
proposed dataset, however, they fail to produce convincing results when the level of noise
is significant such as the SHREC-16 dataset [112] as shown in Figure 4.6. While intuitively
template based seems optimal for the task of partial setting, it is unclear as to why both
the methods fail under severe partiality and is a point of interest to better understand the
shortcomings.

(a) (b)

Figure 4.6.: Visualising correspondence between whole-part matching setting from the holes
challenge of SHREC-16 dataset. Left : Qualitative example and Right - Quantita-
tive comparison between ours and 3D-Coded. Our approach performs inferior to
3D-Coded in contrast to previous settings.
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5. Conclusion and Future Work

In this thesis, we have analysed several methods for 3D Shape reconstruction and used
them as a main tool to perform 3D shape optimisation. We further demonstrated that such
reconstruction based approaches can successfully be applied to the context of non-rigid Shape
Correspondence. Our main contribution however was the Latent Shape Optimisation. We
demonstrated that optimisation of different properties of a shape can be performed at the
latent space given sufficient data annotated with respective properties.

While our approach is simple and effective, it opens many questions for the future research
in 3D Computer Vision. In particular, which other subfields of Shape Analysis can benefit
from the Deep Implicit Neural Networks? Can we improve the performance of a Network
outside of generative modelling by optimising latent vectors through backpropagation? While
these questions in itself are interesting, it would also be a momentous task to solve the
dependency of a non-differentiable iso-surface extraction to obtain visual feedback of the
reconstruction algorithm. In all our experimental settings discussed in this report, a latent
vector corresponds to a shape which is implicitly defined and can only be visualised upon
applying Marching Cubes which is a non-differentiable algorithm. It would be interesting to
have a computationally feasible alternative wherein, we can have a visual feedback and apply
a differentiable supervision upon the implicitly defined shape.

Finally, we hope that works described in this thesis can be successfully applied to real-world
settings and have meaningful practical applications. It would be very interesting and exciting
to see if our work in shape optimisation actually contributes to lesser plastic consumption.

39



40



A. Additional Figures

A. Additional Figures

A.1. Comparison of Reconstruction Methods

Figure A.1.: Comparison between various Deep Implicit 3D reconstruction methods on more
examples from chair class of ShapeNetV2 dataset. Left to Right : Original mesh,
DeepSDF, IM-Net, PQ-Net and DualSDF.
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A.2. Comparison of High-Frequency Reconstruction Methods

Figure A.2.: Comparison between various high-frequency reconstruction method on the
Bottles dataset. Left to Right : Original, DeepSDF, DeepSDF+FFM, CSDF,
CSDF+FFM, Modulated Network.
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Figure A.3.: Comparison between various high-frequency reconstruction method on FAUST
dataset. Left to Right : Original, DeepSDF, DeepSDF+FFM, CSDF, CSDF+FFM,
Modulated Network.
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A.3. More Latent Space Optimisation Visualisation

Figure A.4.: Qualitative comparison of different variants of LSO. Left to Right : A-LSO, L-LSO,
C-LSO NN, C-LSO (k=4 neighbours).
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A.4. More Non-rigid Shape Correspondence Visualisation

Figure A.5.: More qualitative comparison between different methods for non-rigid Shape
Correspondence. Left to Right : Source mesh, Target mesh with correspondence
color-coded by 1) 3D-Coded, 2) DeepShells, 3) Ours and 4) Ground Truth
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A.5. More Non-rigid Partial Shape Correspondence Visualisation

Figure A.6.: Qualitative comparison between different methods for part to whole matching.
Left to Right : Source mesh, Target mesh with correspondence color-coded by 1)
3D-Coded, 2) DeepShells, 3) Ours and 4) Ground Truth
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Figure A.7.: Qualitative comparison between different methods for whole to part matching.
Left to Right : Source mesh, Target mesh with correspondence color-coded by 1)
3D-Coded, 2) DeepShells, 3) Ours and 4) Ground Truth
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A. Additional Figures

Figure A.8.: Qualitative comparison between different methods for part to part matching.
Left to Right : Source mesh, Target mesh with correspondence color-coded by 1)
3D-Coded, 2) DeepShells, 3) Ours and 4) Ground Truth
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