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Abstract

Shape optimization is a fundamental problem in computer graphics with wide-ranging applications, including indus-
trial design engineering, 3D generative modeling, and personalized manufacturing. While most existing generative
models focus on visual appearance or geometric plausibility, they rarely aim to address structural or physical con-
straints that might be imposed by the industrial design considerations. On the other hand, the vast majority of
literature in 3D shape optimization is geared towards single-use cases via costly physical simulation. To that end,
in this paper, we propose a simple yet comprehensive technique, first for estimating a desired physical property
of an object based on its 3D structure, and, secondly for generating 3D shapes with desired physical characteris-
tics. For this, we take a data-driven approach and represent each shape as a parameterized implicit surface with
an associated latent vector. To handle data scarcity, we propose a novel generative approach for new shapes by
sampling within convex polytopes constructed in the latent space. This ensures that the generated shapes remain
plausible while improving their physical properties. In addition to our technical contribution, we also introduce a
new dataset of bottles annotated with physical properties. Through extensive experiments, we demonstrate that our
method is robust and produces geometrically plausible shapes while respecting multiple prescribed constraints.
CCS Concepts
• Computing methodologies → Shape analysis; Machine learning approaches;

1. Introduction

Shape optimization has been a crucial problem in the field
of Computer Graphics for several decades [All02, PASS95].
The importance of this problem is underlined by the wide
variety of its application areas, ranging from industrial de-
sign and 3D content generation to the design of prosthet-
ics [Zoh18, Bjö85] to name a few. This problem is particu-
larly challenging due to the necessity of producing designs
that optimally satisfy both aesthetic and physical consider-
ations. Moreover, the importance of shape optimization is
increasing due to the evolving and multi-faceted needs of
various industries. Standard practices for optimizing shape
structure often strongly rely on significant design and artis-
tic expertise in 3D sculpting, meshing and UV Layout, with
significant time and human labor costs.

Traditional approaches for shape optimization often in-
volve deterministic or stochastic search strategies, such as
gradient descent or evolutionary algorithms, which strive to
find the optimum shape that minimizes a predefined cost
function [ZNP08, All02]. This function usually represents
some form geometric criterion, like smoothness or symme-

try, but can miss realism in the context of a broader shape
space. On the other hand, learning-based methods have been
introduced to produce shapes that are visually pleasing or
resemble real-world structures based on their geometric fea-
tures [BRFF18b, PFS∗19, RLR∗20]. These techniques have
demonstrated remarkable results, thereby contributing sig-
nificantly to digital content creation.

However, both categories of approaches exhibit certain
limitations. Firstly, generative models often overlook the
constraints posed by physical or structural characteristics.
In other words, they frequently generate shapes without
considering their feasibility and utility in real-world con-
ditions, thus failing to balance the intricacies of aesthetics
and functionality. Secondly, among the methods that con-
sider physical plausibility, most existing models are primar-
ily geared towards single-use cases, such as stability under
gravity [MBBO22], making it difficult to produce shapes
that satisfy multiple constraints simultaneously. Finally, ex-
isting data-driven methods strongly rely on the abundance
of training data for optimal performance, posing a signifi-
cant barrier in real-world applications.
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Figure 1: Illustration of our approach. Given an initial shape and a target topload value (53.3 annotated), we would like to find
a shape for this prescribed topload (right-most). Unconstrained optimization produces a shape with significant change in the
volume while optimizing in the convex neighborhood yields a more realistic shape. Ours, which optimizes in the convex-hull
of a quadrilateral produces the most plausible result.

To address these shortcomings, we propose a compre-
hensive technique for generating 3D shapes that ensures
adherence to different physical properties while maintain-
ing realism. Our approach represents each shape as a pa-
rameterized implicit surface with an associated latent vec-
tor [PFS∗19,DZW∗20,CZ19], thus enabling a global signa-
ture for a shape from which different properties can be in-
ferred. Given this representation, we learn a differentiable
mapping between the shape signature and its various phys-
ical properties. Remarkably, we empirically show that the
latent vectors constructed from implicit shape representa-
tion lead to more accurate physical property estimation com-
pared to different categories of state-of-the-art data-driven
techniques that operate on explicit shape representation.
Then, for a given target physical property, we generate new
shapes by sampling within convex polytopes constructed in
this latent space. By navigating the “trusted part” of the
latent space, we leverage the advantage of having a reduced
representation and do not require abundant training data to
produce plausible shapes as shown in Figure 1. Furthermore,
in an effort to help advance research in shape optimization,
we introduce a new dataset of consumer grade plastic bottles
annotated with physical properties such as topload (stress
required to collapse), point-wise density, mass, and volume.
Through extensive experiments, we demonstrate that our
method not only produces geometrically plausible shapes
but also robustly respects multiple prescribed constraints.

In conclusion, our contributions are threefold:

1. We present a novel, comprehensive technique for generat-
ing 3D shapes that adhere to multiple physical properties.

2. We propose to exploit parameterized implicit surfaces
with associated latent vectors and sampling within con-
vex polytopes in the latent space for shape generation.

3. We introduce a new dataset of shapes with annotated
physical properties for shape analysis and optimization.

2. Related Work

2.1. 3D Deep Generative Models

A wide range of approaches have been proposed in recent
years for 3D shape synthesis. The use of generative mod-
els for voxel grids [WZX∗16, SM17,GFRG16,GJvK20] rep-
resents a natural progression from the significant advance-
ments made in image generation problems. However, this
approach encounters challenges related to high computa-
tional costs, which impede the generation resolution and
overall quality. To address this issue, some studies have pro-
posed a more efficient shape representation based on oc-
trees [TDB17, RUG17] to mitigate the demanding mem-
ory requirements. Nevertheless, even this sparse represen-
tation has limitations in terms of resolution and fails to
capture the intricate details of 3D shapes. In an effort
to enhance generation quality, researchers have explored
alternative shape representations, including point clouds
[ADMG17,HHGCO20], surface meshes [TGLX18,GFK∗18,
WZL∗18, GYW∗19], multi-view depth maps [ASHW∗17],
implicit functions [CZ19,PFS∗19,KFW20], among others.

However, most of these methodologies focus on low-level
geometry, neglecting the inherent shape structure during the
generation process. The spatial arrangements of objects and
relationships between components have been recognized as
critical for establishing and understanding structural infor-
mation [MWZ∗13,CRXZ19]. Recently, several studies advo-
cate for incorporating shape structure alongside geometry
in the learning process. Nash and Williams [NW17] suggest
generating segmented 3D objects part-by-part, while Li et
al. [LXC∗17] and Mo et al. [MGY∗19] introduce generative
neural networks for 3D structures, represented as binary
trees and N-ary hierarchies, respectively. In contrast, the
work in [WWL∗19,WZX∗20] views 3D shapes as a sequence
of part geometries. The method proposed in [KGHB19] takes
a step further by learning primitive abstraction to enhance
the understanding and synthesis of 3D shapes. Shapes are
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synthesized with part labeling in [WSH∗18], and another
set of techniques generates 3D shapes by composing parts,
as seen in [SKZCO19, YCC∗20, DXA∗19]. Similarly, Mo et
al. [MWYG20] utilize a tree-hierarchy representation from
[MZC∗19] to generate 3D shapes.

Related to our approach are also techniques that pro-
mote physical properties of generated 3D shapes. For exam-
ple, in the work presented by [GYW∗19], the authors intro-
duce a deep generative neural network designed to generate
structured deformable meshes while ensuring support sta-
bility. Additionally, they put forth an optimization pipeline
that leverages the inferred support relationships to enhance
the results, achieving physically stable and well-connected
shapes.

Another approach, [SCS∗20] enhances the quality of the
generated results by iteratively filtering the generated con-
tent and injecting the filtered content back as training data.

More recently several approaches have been proposed for
incorporating physical constraints in data-driven approaches
[MBLO21,MBBO22,YYZ∗23,LWWY23] aided, in part, by
advances in differentiable simulation [HAL∗19]. For exam-
ple, in [MBBO22] the authors explicitly embed physical con-
straints into the training objective function. The physical
understanding is hence explicitly derived from the objective
function rather than implicitly from the data. This leads to
a better control of the physical quality but also relies on the
availability of a differentiable simulator capable of modeling
the desired property.

2.2. Shape Optimization

Our work is closely tied to techniques in shape optimization,
which is a well-established field with a rich history rooted
in applications spanning structural mechanics to electro-
magnetism [All12, PL15]. Originating from applications in
digital fabrication, shape optimization problems have also
been explored in computer graphics. The goal is to iden-
tify shape variations that satisfy specific design objectives,
encompassing physical properties like stability [PWLSH13,
WW16, ZXZ∗17], rotational dynamics [BWBSH14], struc-
tural stability and durability [UIM12], and constraints re-
lated to aerodynamics and hydrodynamics [BRFF18a].

In contrast to these approaches and aligning more closely
with our methodology, the authors in [BRFF18a] employ
a neural network to formulate their optimization objective
function. They train a Geodesic Convolutional Neural Net-
work [MBM∗17] to construct a differentiable fluidynamics
simulator, subsequently utilized to optimize input shape pa-
rameters. Diverging from prior works, our proposal involves
operating on the latent representation of the shape and en-
tails the development of both a physical property estimator
and, more importantly, constrained navigation in the latent
space, which produces more plausible shapes without rely-
ing on prohibitive amounts of training data or the presence
of a differentiable simulator.

Figure 2: Examples of shapes of various bottles in our
dataset.

3. Motivation and Overview

Our main goal is to develop and evaluate machine learning-
based approaches, first, for estimating physical properties
of 3D shapes based on their geometric structure, and sec-
ond, for generating plausible shapes with prescribed physical
characteristics.

To achieve this goal, we first assemble an annotated
dataset, which contains a wide variety of 3D designs of bot-
tles annotated with three main properties, namely, topload
(described in Sec. 4.2), volume and mass. The details of our
dataset are provided in Section 4. Then, we compare var-
ious differentiable representations of surfaces via implicit
functions in Section 5.1. Subsequently, equipped with an
annotated dataset and implicit surface representation, we
describe our approach for inferring this physical property
in Section 5.2. Finally, given these findings, we propose a
novel approach for generating plausible 3D shapes via con-
strained latent space optimization in Section 5.4. We present
our main experimental results in Section 6, while Section 7
concludes the paper, summarizing our main contributions,
the limitations of our approach and future directions.

4. Dataset

In this section, we provide an overview of the dataset intro-
duced for learning and evaluating different approaches.

Figure 3: Distribution of various scalar properties associated
with bottles that we use in shape optimization.

4.1. Description

As mentioned above, we evaluate our approach on a dataset
consisting of consumer-grade plastic bottles represented as
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Initial State Before collapse Breaking Point

Figure 4: Depiction of how topload is estimated. Steadily in-
creasing displacement is applied to the top of the bottle. The
peak force before the bottle begins to warp (collapse) deter-
mines its topload. The plot (right) shows the measured re-
sistance force to compression, and its maximal value (76daN
in this case) represents the bottle’s topload.

triangle meshes and annotated with physical properties such
as topload (maximum force resistance to vertical compres-
sion) and point-wise density. A few example shapes from
our dataset are shown in Figure 2. In total, our dataset
comprises of 297 triangle meshes with roughly 4000 faces
per shape. We split the dataset into 80% training set and
20% as test set in accordance with standard practice. We
illustrate the distribution of various physical properties in
our training and test set in Figure 3. A physical property of
particular interest in our dataset is the topload of a bottle
which we describe in detail in the following section.

4.2. Topload of Bottles

The key physical property we aim to optimize is the topload,
which is highly relevant for objects that need to be stacked
during transportation, such as bottles. The topload repre-
sents a bottle’s vertical compression strength, serving as an
indicator of its pallet behavior. More intuitively, it gauges
the stability of bottles, particularly plastic ones. This sta-
bility is assessed using Finite Element Analysis (FEA) tech-
niques via Abaqus software†, where a steadily increasing dis-
placement is applied to the top of the bottle. The peak force
before the bottle begins to warp (collapse) determines its
topload. Being a measure of force, topload is a scalar value
per bottle, quantified in Newtons (N), but is expressed in
decaNewtons (daN) in this report for simplicity. It’s worth
noting that these simulations distinguish between geome-
try and material properties; hence, identical bottle shapes
with different masses can have varying topload values. A
numerical solver, i.e., an explicit model, is used to run the
topload simulation instead of an implicit model, such as Fi-
nite Element Analysis. We used an elastoplastic PET law
for the bottle’s material, with thicknesses derived from past
experimental data or blowing simulations. The bottle con-
tains both air and liquid, and the simulation is performed on

† https://www.3ds.com/products-services/abaqus/

filled (non-empty) bottles. The bottle shapes are primarily
designed internally and are always linked to a market or de-
velopment bottle. The main design objectives are aesthetics,
resistance to topload for pallet transport, and resistance to
sideload for consumer opening.

In Figure 4, we provide a graphical representation of the
behavior across different displacement values. The leftmost
image shows the rest configuration of the bottle, while the
second from the left shows moments before collapse occurs.
The second from the right indicates reaching the breaking
point, corresponding to 76 daN of force exhibited by the
bottle at the moment of collapse. The graph shows the force
(y-axis) exhibited by the bottle in response to the applied
vertical displacement (x-axis). The peak of this graph is our
scalar value of interest, referred to as topload. Once the bot-
tle collapses, the force drops sharply, with the subsequent
fluctuation indicating oscillatory force arising from the ma-
terial. Finally, we recall that our goal in this paper is to gen-
erate a bottle such that its corresponding topload matches
the specified target value.

5. Shape Representation, Physical Property
Estimation and Optimization

In this section, our end goal is to devise a framework for
conditional generation 3D shapes such that the generated
shape bears the required physical property. In particular,
our goal is to produce 3D shapes with a prescribed topload
value, while maintaining constraints related to the volume
of the shape. To that end, we first delineate how to rep-
resent each shape as a parameterized implicit surface with
an associated latent vector followed by a simple data-driven
technique to map these implicit latent vectors to associated
physical properties using MLPs. Finally, we elaborate on our
proposed shape optimization framework in the convex-hull
defined by latent vectors of reference shapes.

5.1. Constructing Latent Shape Representation

We first learn a high-dimensional latent representation of
each shape in our training set. Rather than relying on
traditional mesh-based [HHF∗19] or voxel-based [WZX∗16,
HTM17] learnable embeddings, we use DeepSDF [PFS∗19],
which learns a continuous latent space and leverages an
auto-decoder framework to decode this latent vector into
a continuous SDF. This approach facilitates various opera-
tions like shape interpolation, completion, and editing with
impressive fidelity.

Given a collection of N training shapes, S0 . . .SN , we
first learn their respective latent embeddings λ0 . . . λN us-
ing DeepSDF [PFS∗19]. As observed in recent works, MLPs
fail to produce detailed reconstructions unless trained with
abundant training data [SMRO22]. To overcome this lim-
itation and improve the expressiveness of our model, we
encode the input xyz positions via Fourier Feature Map-
ping [TSM∗20] prior to feeding them into DeepSDF. Since
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sines and cosines are eigenfunctions of the Laplace oper-
ator on a regular domain, mapping the xyz coordinates
to higher dimensions enables them to overcome spectral
bias [TSM∗20,SMB∗20]. Thus, we can express the function-
ality of our network as follows:

fθ(λ⃗i, γ(p)) ≈ SDF(p) ∀p ∈ R3 (1)

Where, γ(p) computes the Fourier embedding for point p.
It can be written as follows:

γ(p) =
[
a1 cos

(
2πbT

1 p
)
, a1 sin

(
2πbT

1 p
)
,

. . . , am cos
(
2πbT

mp
)
, am sin

(
2πbT

mp
)]T

(2)

Where, ai controls the amplitude and bi controls the fre-
quency of the Fourier series. We adapt these parameters as
suggested by [TSM∗20]. Given a collection of N training
shapes with ground-truth SDF for points p ∈ R3, the objec-
tive function for training the network is given as follows:

argmin
θ,{λ⃗i}N

i=1

N∑
i=1

K∑
j=1

||fθ(pj)− sj ||22 +
1

σ2

∥∥∥λ⃗i

∥∥∥2

2
(3)

The above loss function imposes a penalty for discrepan-
cies in the predicted signed distances with the ground truth.
The evaluation points pj are sampled close to the surface of
the shape similar to [PFS∗19]. It also regularizes the norm
of the latent vectors, λi weighted by σ to encourage com-
pact representation. At the test time, the network parame-
ters θ are fixed while optimal latent code λ⃗i is estimated by
Maximum-A-Posterior (MAP) as:

ˆ⃗
λ = argmin

λ⃗

∑
(pj ,sj)∈X

||fθ
(
λ⃗, pj

)
− sj ||2 +

1

σ2
∥λ⃗∥22 (4)

Once we have a compact latent representation of our
shapes, we are now ready to describe our method for physi-
cal property prediction and shape optimization with physi-
cal property objectives.

5.2. Physical Property Prediction

Learning to predict the physical properties from the latent
vector is an important step prior to optimization. Our ap-
proach for prediction also has to be differentiable in order to
be used within a shape optimization pipeline. To this end,
we use a 4-layered MLP which takes the shape latent vec-
tor, produced by DeepSDF and predicts different properties.
We call this network as LP-Net, an abbreviation for Latent
Physical Network. LP-Net is generic in its use and can be
trained to predict one or more physical properties. While
we are particularly interested in topload prediction, we also
benchmark the ability of LP-Net in predicting other physical
properties such as volume and weight. Since LP-Net oper-
ates on a global shape descriptor, we can simply condition
the prediction of LP-Net with other physical properties of

the shape. The training objective of LP-Net can be sum-
marised as follows:

argmin
ϕ

||gϕ(λ, η)− δ||22 (5)

Where δ denotes the physical property that our LP-Net,
gϕ learns. η denotes an additional global property that our
prediction can be conditioned upon. Please note that η is
optional and including it in the learning process only shows
improvement as we demonstrate in the Experiment section.

5.3. Physical Property Optimization

In this section, we consider the task of generating a shape
bearing a topload that closely matches a query topload
value. I.e, given a target value possibly starting with some
initial shape, how do we obtain another shape whose topload
is as close as possible to this target?

We start from a shape from the training set that bears the
closest topload and perform gradient-based optimization to
obtain another shape with comparable topload to match the
query. While satisfying topload is a desirable constraint, we
also seek to simultaneously optimize other physical proper-
ties such as volume of the generated bottle (a “trivial” way to
increase topload is simply to increase the shape’s volume).

To this end, we propose a constrained gradient descent
such that the new generated shape not only satisfies the tar-
get topload but also produces a shape with minimal change
in the volume. Each of two aforementioned tasks are further
subdivided into two possible ways of performing the gradient
based optimization. First is a straightforward gradient de-
scent based approach which optimizes the given latent vector
by minimizing it with the target topload and optionally con-
trolling the volume. Recall that since the topload associated
with a latent vector can be obtained via gϕ, this step is differ-
entiable. While this approach is simple and straightforward,
such techniques often do not scale well with Deep Learning
methods due to the highly non-convex nature of the opti-
mization space. Furthermore, our goal is to also build an
approach that is robust in settings where paucity of train-
ing data is a key concern. To this end, we introduce novel
constrained latent-space optimization technique, where we
force the optimization to be in the linear subspace defined
by the convex-hull of latent vectors. By carefully choosing
points that define this convex-hull, we empirically observe,
as shown in the subsequent section, that our approach pro-
duces more plausible shapes. We first begin by outlining
our general latent space optimization in Section 5.4 followed
by the optimization in the convex-hull defined by training
shapes in Section 5.5. Finally, we show that incorporating
the additional constraint on the physical properties can be
done in a straightforward manner to both class of aforemen-
tioned optimization in Section 5.6.

5.4. Generic Latent Space optimization (LSO)

Using the pre-trained LP-Net and DeepSDF, the goal is to
sequentially modify the latent vector to generate new shapes
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which are realistic and at the same time faithfully reflect the
change in physical property of the object of interest. Let fθ
denote trained Deep-SDF with fixed parameters θ, gϕ denote
the LP-Net with fixed parameters ϕ and the latent vector
denoted by λ⃗. Then, the task of LSO is to find the optimal
latent vector which minimizes the following energy:

E = argmin
λ⃗

Λ1

N∑
i=1

|fθ(xi, λ⃗)− si|+ Λ2|gϕ(λ⃗)− δ| (6)

Where δ is the scalar physical property of interest and si
is the signed distance value at point xi. The parameter Λ
controls the impact of LP-Net in modifying its weights ψ.
The first term of this energy enforces geometric similarity
through point-wise SDF while the second term optimises a
physical property. In practice, we solve this optimization in
two stages. First, we perform 800 steps of gradient descent
with Λ1 = 1,Λ2 = 0 and then perform another 800 steps by
setting Λ1 = 0,Λ2 = 1.

5.5. Optimization in Convex-Hull

The constraint we imposed in the previous case is too weak
in the sense that there is no guarantee that the optimized
latent vector will correspond to a plausible shape. This lim-
its the applicability especially in scenarios where there is a
paucity in data. To alleviate this shortcoming, we propose to
find the optimal latent vector in the region defined by con-
vex hull of K-points. For mathematical brevity, we restrict
K = 3, 4 in our experiments, but theoretically K can take
any value between K=1 and K=M, where M is the size of
training shapes. To recap, K=1 was discussed in the previ-
ous section. Our objective for optimization in convex region
is then defined as:

E =argmin
Ω⃗

N∑
i=0

Λ1 |fθ (xi,Ω)− si|+ Λ2 |gϕ(Ω)− δ1|

Where, Ω =w1α⃗1 + w2α⃗2 + w3α⃗3 + w4α⃗4

s.t wi ∈ [0, 1] and
∑
i=1

wi = 1

(7)

Unlike the case of optimization in Equation 6, where the
latent vectors are updated through gradient descent, in this
case, we only optimize the variables highlighted in green in
the above equation to restrict the latent vector to lie in the
convex-hull.

5.6. Constrained Optimization in Convex-Hull

While optimizing in the convex region implicitly imposes
regularity of the generated shape, it still comes with the
same flexibility as the standard LSO and allows us to add
more constraints to the latent space in-terms of the scalar
property we predict. I.e, we can extend the optimization for
a single scalar value to multiple scalar value(s) at the same
time with negligible computation cost and change to the
previously established framework. In our experiments, we

use volume constraint in addition to the topload constraint.
Considering gϕ2 to be LP-Net with parameters ϕ2 trained
to predict the scalar property δ2, then, the dual-constraint
optimization in convex region is:

E =argmin
Ω⃗

N∑
i=0

Λ1 |fθ (Ω, xi)− si|+ Λ2 |gϕ1(Ω)− δ1|

+ Λ3|gϕ2(Ω)− δ2|

Ω =

4∑
i=1

wiλ⃗i

s.t wi ∈ [0, 1] and
4∑

i=1

wi = 1

(8)

Where gϕ1 and gϕ2 are two networks that optimise differ-
ent physical properties simultaneously.

5.7. Implementation Details

Our code is implemented in Pytorch [PGM∗19] and we use
the Framework provided by DeepSDF [PFS∗19] to amass
training data with annotated SDF value. For optimiza-
tion, we use ADAM [KB14] optimizer with a learning rate
of 1e − 3. We experimented with standard Gradient De-
scent and second-order method L-BFGS [LN89]. The for-
mer showed deteriorated performance while the latter did
not show any improvement over ADAM. We posit the non-
convex nature of this optimization to be a possible rea-
son. For baselines that we compare with, we use the author
provided code with the prescribed hyper-parameter unless
stated otherwise. The weights wi used to enforce that the
latent vector remains within the convex hull must be posi-
tive fractions. Moreover, since these weights have to form the
partition of unity, given a convex-hull defined by k-points,
we would have to optimize for (k-1) free variables. We follow
a slightly different approach for defining an arbitrary point
within the convex-hull of a triangle and a quadrilateral elab-
orated as follows. Given α1, α2 to be our optimizable vari-
ables, a latent vector λi can be expressed in the convex-hull
spanned by λ1, λ2, λ3 as follows:

λi := w1λ1 + w2λ2 + (1− w1 − w2)λ3

Where, w1 = σ(α1)(σ(α2)− 1) and w2 = σ(α1)

Where σ is the sigmoid function. Similarly, for a quadri-
lateral, we can express λi as follows,

λi := w1λ1 + w2λ2 + w3λ3 + w4λ4

Where, w1 = σ(α1)σ(α2), w2 = σ(α1)(1− σ(α2)),

w3 = (1− σ(α2))(1− σ(α1)) and w4 = (1− σ(α1))σ(α2)

We observed in our experiments that the above construc-
tion of the convex-hull for a quadrilateral to yield better
result than using three free variables. We choose the shapes
defining the convex-hull as those bearing closest topload to
the target. In case we are given a query shape geometry,
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we choose neighbours that has volume closest to the query
shape. This distinction is better elaborated in the experi-
ments section.

6. Experiments and Results

Method CD (↓) EMD (↓)
DeepSDF [PFS∗19] 6.0 5.1
IM-Net [CZ19] 6.2 5.2
Curr-DeepSDF [DZW∗20] 5.5 5.0
DIF-Net [DYT21] 5.3 4.8
Ours 5.2 4.7

Table 1: Comparison of different methods for implicit sur-
face reconstruction of shapes represented as bottles. CD and
EMD are scaled by 103. We highlight the best in green and
seccond best score using yellow.

In this section, we present qualitative and quantitative
evaluation for shape representation, physical property es-
timation and optimization. As mentioned before, our opti-
mization framework relies on implicit surface representation.
Therefore, we first compare different possibilities for repre-
senting implicit surface in Section 6.1. Then, we will provide
quantitative comparison between different surface-based and
point-based methods for various physical property predic-
tion against our approach in Section 6.2. Finally, we provide
qualitative and quantitative evaluation of our novel physical
property optimization framework in Section 6.3.

6.1. Implicit Surface Reconstruction of Bottles

We compare different approaches for implicit surface repre-
sentation of bottles with our choice. To recall, our represen-
tation is the standard DeepSDF whose inputs are mapped
to Fourier-Domain [TSM∗20]. We compare with 4 other
methods that represents shape as a latent vector and en-
codes the Signed Distance Field into the weights of MLP.
Firstly we use the two first methods to represent zero-level
sets of shape via a Neural Network as our baseline, namely
DeepSDF [PFS∗19] and IM-Net [CZ19]. Then we use an
improved version of DeepSDF [PFS∗19] with curriculum
learning strategy, referred to as Curr-DeepSDF [DZW∗20].
Our final baseline is the DIF-Net [DYT21] which extends
SIREN [SMB∗20] to a collection of shapes via displace-
ment field learnt over an inferred template. Our quanti-
tative results are summarized in Table 1. We use Cham-
fer Distance and Earth Mover’s Distance as our evalua-
tion metric, commonly used in shape reconstruction prob-
lems [ADMG17]. While being simple and computationally
comparable to other baselines, our approach produces bet-
ter reconstruction. We also visualize qualitative examples
in Figure 5. SIREN [DYT21] preserves sharp features but
at the same time produces artifacts. Our approach pro-
duces better reconstruction of finer details such as seams
and creases without such artifacts.

DIF-Net CSDF GTOursInput

Figure 5: Comparison of implicit surface reconstruction by
different methods. The first column shows the input points
colored by their SDF and subsequent columns are recon-
struction by different annotated methods. Ours produces an
accurate reconstruction preserving detailed features such as
creases

6.2. Physical Property Prediction of Bottles

As mentioned previously, in addition to shape representation
and optimization, another goal of our work is to compare
the utility of different previously proposed shape represen-
tations for estimating physical properties from the geomet-
ric shape structure. Differently from previous studies, which
focus primarily on estimating semantic properties, such as
shape category [WSK∗15] or part label [MZC∗19], our main
goal is to evaluate some underlying physical property of the
shape based on its geometric structure. This presents a novel
application of geometric deep learning approaches, and thus,
one of our contributions lies in comparing the effectiveness
of different existing approaches for estimating the topload
of a bottle.

6.2.1. Baselines

Specifically, we compare the efficacy of our LP-NET with dif-
ferent categories of explicit data-driven techniques. We com-
pare against surface-based, graph-based, and point-based
methods which can leverage more principled geometric in-
formation. Namely, we use the classic PointNet [QSMG17]
and PointNet++ [QYSG17] as our point-based baselines.
We use DGCNN [WSL∗19] as the graph-based baseline
and use DeltaConv [RAEK22] and DiffusionNet [SACO22]
as surface-based baselines respectively. The latter methods
have been shown to obtain superior performance compared
to purely point-based methods on tasks such as shape seg-
mentation or shape matching, as they also take into account
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the surface mesh structure. However, their efficacy for phys-
ical property estimation is not well understood which is
why we include them in our comparison. We note that the
surface-based methods DiffusionNet [SACO22] and Delta-
Conv [RAEK22] are not fully differentiable with respect to
the changes of the input geometry. This is because they rely
on non-differentiable pre-processing steps, such as comput-
ing the Laplace-Beltrami eigen-decomposition [SACO22]. As
such, we only include them for comparison and emphasize
that they cannot be used to guide shape optimization to
achieve a prescribed physical property, which is our ultimate
goal.

6.2.2. Baseline Implementation Details

We used the author-provided implementation of different
methods for our comparisons. For PointNet [QSMG17], we
used two T-Nets for learning input transformations and fea-
ture transformations, each consisting of 2-layer MLPs. Be-
tween the input transformation and feature transformation,
three 1D Conv layers were used. After applying a max-
pooling operation to obtain a permutation-invariant fea-
ture vector, we applied a 3-layer MLP to predict topload.
For PointNet++, we applied 3-layer convolutions at each
scale where grouping operations were performed. Similar
to PointNet, we used a 3-layer MLP over the global la-
tent code. For DGCNN [WSL∗19], we used five learnable
layers with 40 points used to construct a local neighbor-
hood. We used Batch Normalization [IS15] in all three base-
lines discussed so far. For DiffusionNet [SACO22], we used
xyz input with 128 eigenvalues for computing the spectral
diffusion and four diffusion blocks with 128 channels. Fi-
nally, for DeltaConv [RAEK22], we scale-normalized the in-
put point cloud and sampled 2048 points on the surface us-
ing geodesic farthest-point sampling alongside normals. The
network consisted of 4-layer MLPs with 20 neighbors used
for estimating the gradient.

6.2.3. Discussions

As outlined in Section 6.1, our approach consists of train-
ing an MLP whose input is the latent vector obtained from
implicit surface representation. We train this network for a
total of 300 epochs. We provide quantitative results in Ta-
ble 2 where we compare the efficacy of different methods
in predicting various physical properties such as topload,
Volume, and Mass of bottle. While Mass and Volume are
properties that can be inferred from the geometry, estimat-
ing topload also requires information on density. Therefore
we compare two versions of topload prediction, namely with
and without providing the mass information, with the latter
denoted as topload (W/o W) in our Table. While being both
simpler and computationally efficient, our approach outper-
forms point-based and other surface-based methods. While
DeltaConv [RAEK22] produces comparable performance,
using it for shape generation/optimization is not straightfor-
ward. On the other hand, our latent vectors are conducive
to shape generation and therefore are better adaptable for
tasks such as shape optimization.

Figure 6: K-fold cross-validation plots on the accuracy of
topload prediction. The observed mean accuracy is compa-
rable to that observed on the test set.

Method Topload Topload (W/o W) Vol Mass
PointNet [QSMG17] 73.0 62.2 50.1 60.2
PointNet++ [QYSG17] 77.3 61.5 48.0 62.3
DGCNN [WSL∗19] 67.7 56.4 50.8 51.8
DiffusionNet [SACO22] 73.9 59.0 54.9 57.4
DeltaConv [RAEK22] 81.2 72.1 72.0 73.1
Ours 86.4 82.5 90.8 91.5

Table 2: Comparison of our latent-vector based physical
property prediction against point-based, graph-based and
surface-based data-driven approaches. All numbers reported
are in Percentage of accuracy.

6.2.4. K-fold Cross Validation

To evaluate the performance of our model in a robust and
unbiased manner, we perform K-fold cross-validation. By
partitioning the dataset into k-subsets (k=5), or "folds", we
iteratively train and validate the model on different combi-
nations of these folds. This approach mitigates the risk of
overfitting a particular subset of data and provides a more
comprehensive assessment of the model’s generalizability.
Additionally, K-fold cross-validation helps in identifying any
variance in model performance across different data splits,
offering insights into its stability and reliability. To that end,
we split the training dataset into 80-20% and use the for-
mer for training and latter for evaluation. We plot the re-
sult in Figure 6. Our observed mean accuracy during the
K-fold cross-validation is consistent with the mean accuracy
reported on the test set, thus showing that our model does
not suffer from overfitting bias.

6.3. Topload Optimization for Bottles

In this section, we evaluate various methods for optimizing
the topload of a specified shape. Our algorithm, not predi-
cated on a given input geometry, begins by selecting a shape
(i.e., a latent vector) from the training set that approximates
the desired topload. Subsequently, we refine the shape’s ge-
ometry to align with the targeted topload. We examine three
primary experimental scenarios. The first involves an un-
constrained gradient descent, focusing solely on optimizing
topload. In the subsequent two scenarios, we incorporate a
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volume constraint alongside topload optimization. Specifi-
cally, we mandate minimal volume alteration of the shape
while optimizing for topload. These two constrained scenar-
ios are distinguished based on the initial proximity of the
query topload to the target topload: one with a near initial
condition and the other with a far initial condition. This dis-
tinction allows us to assess the efficacy of different methods
in traversing the latent space and their capacity to generate
varied shape configurations.

6.4. Evaluation Metrics

To evaluate the effectiveness of various methods, we em-
ploy five distinct metrics: Chamfer Distance (CD), Cover-
age, Minimum Matching Discrepancy (MMD), and Jensen-
Shannon Divergence (JSD), as originally proposed by
Achlioptas et al. [ADMG17]. Coverage and Minimum
Matching Distances can be calculated using either Cham-
fer Distance or Earth Mover’s Distance (EMD). CD is mea-
sured between the generated shape and the one possessing
the target topload. Since these metrics necessitate geomet-
rical evaluation, we perform this analysis using shapes from
our test set. To ensure fairness, the shape corresponding to
the target topload is withheld from all the methods under
comparison.

6.5. Discussions

We provide a quantitative comparison among a nearest-
neighbour search, unconstrained optimization, and two
forms of constrained optimization, as presented in Table 3.
For the gradient descent-based methods, results are further
categorized into three groups: without volume constraint,
initializing with a topload nearest to the query, and far from
the query, denoted as W/o Vol Con, NN-Init, and Far-Init,
respectively. For the NN-init, we choose the shapes form-
ing the convex-hull as those whose topload are closest to
the target topload. In the Far-Init case, we choose shapes
whose volumes are closest to the query shape’s volume. In
the first two scenarios (W/o Vol Con and NN-Init), uncon-
strained gradient descent demonstrates performance compa-
rable to that of constrained optimization. However, in the
Far-Init case, unconstrained optimization significantly dete-
riorates, exhibiting mode collapse, a common issue in gen-
erative models [KHAK18], as highlighted by poor coverage
and Jensen-Shannon Divergence (JSD) metrics. Conversely,
our constrained optimization outperforms other methods
and avoids this pitfall. Qualitative examples are provided
in Figure 8, where the initialization is closer to the target
topload. The first row shows that unconstrained optimiza-
tion yields an unrealistic shape, divergent from the initial
form, while constrained optimization results in more real-
istic shapes. In subsequent rows, our constrained approach
consistently generates more plausible shapes than uncon-
strained optimization. This advantage stems from the limi-
tation imposed by the convex-hull of known realistic shapes,
proving especially beneficial in scenarios with limited train-
ing data. Additionally, Figure 9 showcases examples where

Input Neighbour-1 Neighbour-2 Optimized

Figure 7: Illustrating the non-convergence issue due to dras-
tic change in volume of the initial shape. Due to a sub-
optimal choice of neighbor, our convex-space optimization
results in an optimized shape (third column) that bears a
significant volume increase.

the starting shape’s topload is substantially different from
the target. Here, our convex optimization yields a diverse
array of shapes, whereas unconstrained gradient descent of-
ten settles into local optima, producing similar outcomes for
different starting shapes. Lastly, Figure 10 demonstrates the
impact of enforcing a volume constraint during optimization.
When a neighbor significantly differs in volume, imposing
this constraint prevents the optimization from gravitating
towards that shape, an effect not observed without the con-
straint. We demonstrate more qualitative results of shape
optimization in the Appendix 8

6.6. Timing

We observed that the straightforward gradient descent is the
most time-efficient approach which approximately requires
12 seconds per shape for optimization. On the other hand,
the approaches based on convex hulls are slightly more ex-
pensive. Optimizing within a triangle requires 20 seconds
per shape on an average for optimization while optimiza-
tion within the convex-hull spanned by a quadrilateral re-
quires 18 seconds per shape on an average. This is mostly
because the approaches based on convex-hull also depend
on the neighborhood and for the neighborhood spanned by
some shapes, this optimization does not converge and has
to be repeated with another pair of neighbors. We illustrate
one such failure in convergence due to a drastic increase in
volume in Figure 7. In our experiments, we observed conver-
gence when one of the shapes defining the convex-hull has a
comparable topload to one of the target topload. We report
the average across 60 testing shapes performed on Ampere
A-100 GPU.

6.7. Generalization to Other Categories

The approach we have proposed for physical property
estimation and optimization is general-purpose and can
be adapted to different object categories. While we have
demonstrated the efficacy of our approach in optimizing
topload, a material-dependent physical property of bottles,
in this section, we discuss the generalization of our method-
ology to a different object category and another material-
dependent physical property.
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Experiment Method CD ↓ Cov % (CD) ↑ COV % (EMD) ↑ MMD (CD) ↓ MMD (EMD) ↓ JSD ↓

W/o Vol Con
Uncon 4.2 51.0 55.6 0.87 4.2 0.017
Trig 4.3 50.2 54.3 0.93 4.2 0.022
Quad 3.4 53.2 55.8 0.79 4.1 0.015

NN-init
Uncon 4.1 50.3 48.4 0.86 4.1 0.018
Trig 4.3 49.7 53.5 0.93 4.2 0.019
Quad 3.2 48.9 54.8 1.10 4.5 0.016

Far-Init
Uncon 9.4 5.0 6.7 1.10 4.5 0.220
Trig 4.3 31.7 31.7 1.32 4.3 0.050
Quad 3.7 42.0 58.1 0.92 4.1 0.039

NN-search 4.8 45.7 52.7 1.00 4.4 0.110

Table 3: Summary of quantitative results for topload opti-
mization. We report 3 scenarios, namely, without imposing
volume constraint, initializing with a shape from training set
of closest topload and farthest topload respectively. Arrow-
marks indicate the direction of desired value. Please refer to
text for more details.

51.0 68.0 67.5 67.6 67.5

65.966.066.066.245.6

71.0

51.5
71.271.0

71.1

Init Uncons QuadTrig Reference

Figure 8: Comparison of different techniques for optimiz-
ing the starting shape (left-most column) to match query
topload. A reference shape that matches the query topload
is given in the right-most column.

To that end, we consider chairs from the ShapeNetSM
dataset [SCH15]. The ShapeNetSM dataset consists of ap-
proximately 12,000 objects of various categories with anno-
tated physical properties such as weight, solid volume, sur-

87.2
28.9

28.8 28.8 28.9

79.7

35.0
79.679.679.6

Init Uncons QuadTrig Reference

Figure 9: Comparison of different techniques for optimiz-
ing the starting shape (left-most column) to match query
topload. The initial shape is chosen such that its topload
is furthest from the target topload. First row shows a case
where we reduce the topload while the second row shows
a case where topload is increased. Note that unconstrained
produces a similar shape in both cases.

Initialisation Neighbour-1 Neighbour-2 Optim Wo/Vol Ours GT

Figure 10: Illustration of our constrained optimization with
constraint on volume of the generated bottle. Our con-
strained optimization produces a shape with volume close to
the initialization whereas without enforcing the constraint
results in a shape with disparate volume.

face volume, static friction, etc. In this section, we focus on
the Chairs object class, as the total annotated data is ap-
proximately the same as for Bottles in our previous setup.
We consider ’weight’ as the physical property of interest to
predict and optimize from the global latent representation
of shape.

Consistent with our previous experimental setup, we first
learn latent vectors for Chairs using DeepSDF [PFS∗19] by
mapping the XYZ coordinate signal to Fourier space. Then,
from these latent vectors, we learn the mapping to the anno-
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37. 37.6 37.7 37.7 37.8

67.7 67.6 67.7 67.7 67.8

12.2 12.1 12.2 12.2 12.2
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Figure 11: Comparison of different techniques for generating
a chair with a given query topload. Left to right: Nearest
shape from training set, unconstrained optimization, opti-
mization performed with three neighbors, optimization per-
formed with four neighbors, and reference shape, respec-
tively. The query topload corresponds to the reference shape.

Method CD Cov (CD) Cov (EMD) MMD (CD) MMD (EMD) JSD
Uncon 1.4 49.9 42.8 0.5 0.14 0.02
Trig 1.4 49.0 39.0 0.6 0.16 0.03
Quad 1.3 50.1 43.0 0.5 0.13 0.02

Table 4: Summary of quantitative results for weight opti-
mization (increase). We provide a comparison between three
baseline methods: unconstrained optimization, and two con-
vex optimization techniques—one with two neighbors and
the other with three neighbors. Please refer to the text for
more details.

tated weight of the objects using our LP-Net. Finally, using
the pre-trained implicit shape representation, learned latent
representation, and LP-Net, we optimize for the weights of
the shape. Specifically, the goal of our optimization is to pro-
duce a shape whose weight is increased by 25% compared to
the initial query weight.

Since ShapeNetSM does not come with annotated prop-
erty sharing correlation, we perform an unconstrained op-
timization (cf. Eqn 7) instead of constrained optimization
as in the case of bottles. Our quantitative results are sum-
marized in Table ??. We compare two latent convex op-
timization methods, namely using 3-neighbors (Trig) and
4-neighbors (Quad). The neighbors in convex space opti-
mization have been initialized at random. In addition, we
compare with unconstrained optimization (Uncon) and sim-
ply retrieving the nearest neighbor (NN-search).

7. Conclusions, Limitations, Future Work

In conclusion, in this work we proposed a novel a data-
driven method, first to estimate and, second to optimize the
physical properties of 3D objects. Our experiments under-
score the robustness of our approach, which bridges the gap
between geometric accuracy and physical fidelity. Interest-
ingly, we show that previous geometric deep learning meth-
ods that operate on explicit shape representation strongly
under-perform in inferring physical shape properties. In con-
trast, our method built upon an innovative use of neural im-
plicit representation, provides both accurate physical prop-
erty inference and enables shape optimization. By introduc-
ing a novel challenging and annotated dataset, we further
contribute not only technically but also in terms of valuable
resources to the research community.

Nevertheless, our work has several limitations. First, it de-
pends on data availability for training both the latent space
and our physical property estimation networks, potentially
faltering with very sparse or unrepresentative datasets. The
accuracy of physical property estimation, especially for in-
tricate characteristics, also warrants improvement. Further-
more, our method’s convexity assumption in the latent space
may hinder its effectiveness in scenarios where the geometry
of the latent space of plausible shapes is highly complex.

In the future, we plan to investigate pre-training strate-
gies for improved data utilization. Additionally, extending
our methodology to real-time applications and developing
multimodal optimization techniques promises to bring fur-
ther improvements.
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8. Appendix

In this section, we show more qualitative examples of var-
ious shape optimization techniques proposed in the main
article in Figure 12. An important observation we make is
that unconstrained optimization produces limited shape va-
riety, a drawback which the proposed constrained optimiza-
tion does not suffer from. Especially, when the initialization
is far away from the target topload, the unconstrained op-
timization gets “stuck” in a local minima - a latent vector
corresponding to two shapes. This phenomenon can be seen
highlighted in the second column of Figure 12. On the other
hand, our convex optimisation produces a blended shape of
neighbours, resulting in more than one possible shape for a
given initial shape and target topload. This however could
not be made possible with unconstrained optimization.

Init Uncons QuadTrig Reference

Figure 12: We show more qualitative examples of our op-
timization framework. Given an initial bottle (left-most),
subsequent column shows the optimized result produced by
different methods. Last column shows the reference bottle.
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